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One Dimensional Polynomial Shape Function
A general one dimensional polynomial shape function of nth Order is given by,
u(x) =0+ 0y x+ 03 X+ .0 X"
In matrix form u =[G] {a}

where [G] = [I,X,X2 X"]

and {a}T=[a1 0y Oy 5a; Oy

Thus in one dimensional n™ order complete polynomial there are m= n + 1 terms.

Two Dimensional Polynomial Shape Function

A general form of two dimensional polynomial model is

3

U(X, y) = O+ Oy X+ Oy y+ 0y X+ O XY+ O o+ Qg X+ 0y Y

V(X'y) SO0 T Oy X+ 0y 3 y+ ...+ aZm.yn
B u(x,y) ~ N G 0
o CENMISICIOR R ©
where G=[lxyxxyyx.yl

{a}Tz[O‘l Oy O3 Oy --~0‘2m]

It may be observed that in two dimensional problem, total number of terms
'm in a complete nth degree polynomial is

(n+1)(n+2)
2

m=
For first order complete polynomial n= 1,
(1+1)(1+2)

R = 3
2

The first three terms are o/, + @, x + 5 y
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(2+1)(2+2)
Similarly for n=2, m= —a =6

and we know the first six terms are,
O+ 0y X+ 0y y+ 0y X+ O Xy + Ol V-
Another convenient way to remember complete two dimensional polynomial is in the form of Pascal
Triangle shown in Fig. 5.2
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Pascal triangle

Three Dimensional Polynomial Shape Function
A general three dimensional shape function of nth order complete polynomial is given by

ulx,y,2) =0+ 0, x+ 0 y+ 0 z+ 0 X+ .+, X" 2

2 n—
(X, 7,2) = Qg+ Oy X+ Q3 Y+ Oy g Z+ Qs X+ oo+ O X 2

— n—1
W(X, Y, 2) = Qppy1+ Copmea X+ Oppya ¥+ Qpppog Z4 oot Qg X Z

u(x v, z) G 0 0
or O, po2)= A vz, ¥:2) [G]{a} 0 G 0|{a}
w(x, y, 2) 0 0 G

Where G = [l xyzxX xyy yzZ zx ...2' 2"'x ... zx"']

and o} =[a, @, 0y .04,

It may be observed that a complete nth order polynomial in three dimensional case is having number of
terms m given by the expression

(n+1)(n+2)(n+ 3
6

m=



i.e.
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1+1)(1+2)(1+3
Thuswhenn:l,mz( )( - )( )=

O+ 0, x+0,y+0,2

2+1)(2+2)(2+3
Forn=2,m=( +)(;)( +)=10

Thus second degree complete polynomial is

O+ O, X+ 0a Y+ 0, 2+ O X+ O Xy + Oy Yo+ Olg Yz + Olg 22+ 0Ly 2X

Complete polynomial in three dimensions may be expressed conveniently by a tetrahedron as shown in
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Beam Analysis

Basic Equations

Differential Equation

A beam that lies in the x-direction with its cross section
in the y-z plane i1s shown in the figure. The beam is subjected to a
distributed load p(x) causing the deflection of w in the z-direction

and the displacement of # in the x-direction.

Y4
A

p(x)

_—
>

S =T \
q ;. .

If beam deflection 1s small, the small deformation
theory stating that the plane sections before and after deflection
remain plane is applied. This lead to the relation such that the
displacement » can be written in form of the deflection w as

u=-2z 6%7’6)(. In addition, if the beam is long and slender, the
deflection w may be assumed to vary with x only, 1.e., w= w(x).
These two assumptions yield to the equilibrium equation of the

beam deflection as,
&2 [ - a-w] _

ox> ox>

Related Equations
The stress o, along the axial x-coordinate of the beam

varies with the strain & according to the Hook’s law as,

o, = Eeg,
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Since the strain is related to the displacement and deflection as,

cu lw
E, = — = -2z
ox ex?

Then, the stress can be determined from the deflection as,

2w

o, = —-FEz

X
ox?

For a typical beam in a three-dimensional frame
structure, its deflection may be in a direction other than the z-
coordinate. In addition, the beam may be twisted by torsion caused
by the applied loads or affected by other members. These
influences must be considered and included for the analysis of three
dimensional beam structures.

Finite Element Method

Finite Element Equations

Finite element equations can be derived directly from
the beam governing differential equation by using the method of
weighted residuals. Detailed derivation can be found in many
finite element textbooks including the one written by the same
author. The derived finite element equations are in the form,

[KI{6} = {F}
where [ K] is the element stiffness matrix; {5} is the element

vector containing nodal unknowns of deflections and slopes; and
{F} 1s the element vector containing nodal forces and moments.

These element matrices depend on the selected beam element types
as explained in the following section.

Element Types

The basic beam bending element with two nodes is
shown i the figure. Each node has two unknowns of the
deflection w and slope 6.
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Distribution of the
deflection w 1s assumed
in the form,

9"‘1
! E, T

le )
1/

X

wmx) = [M Ny, Ny Ny ¢ = | Nx)|{S}

Wy (1x4)  (4x1)

where the element interpolation functions are,

2 3 2
N, = 1—3{f] +2{EJ . N, = x(f—l)
L L L
o (g e 3
L L t\r

These interpolation functions lead to the finite element equations
as,

"6 3L -6 3L7(w (R ) (1
20I|3L 28 3L P |jg| _ M| pL] L/ |
B|l-6 -3L 6 -3L||w E[ 211

3L 2 3L 22 )l6 M, | —1/6]

where A and F are the forces, while M; and M, are the moments,

at node 1 and 2, respectively. The last vector contains the nodal
forces and moments from the distributed load g, which is uniform

along the element length.
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Example = Using polynomial functions (generalized coordinates) determine shape functions for a two
noded beam element.

1 2
G O
x,=0 X, =1
u1’ 1 uZ’ 2
« I v
fw I
1 " g aw,
0 where | = —
{6} N g ::> ox
W,
(9W2
6> ) and 6, =——
ox

Since there are four nodal values, we select polynomial with four constants. Thus

W=0+ 0y X+ 0z X+ 00y X°

Equation 5.13 satisfies compatibility and completeness requirement. Now,

ow
9 == a2+ 2a3X+ 3(14X2
dx

For convenience we select local coordinate system.

ie., x,=0
X2=1

.. Wl = al

0,=a,

Wy = Oy + Oy I+ g P+ 0ty P

92 - Ot2+ 2a31+ 3(1412

(W 10 0 0]fe
; 6 010 0]
ie. [6}=414= . xL

w |1 1 P Pllas

6,] [0 1 21 3F||e,

7 -1 [ 2 ]

o, 100 0] (w r o =3¢ 21||wm
a,| |01 0 0 0| _ 1 0 I =3B P |]8;
or[ (1 1 P P wy[ 3'-2"|0 0 3F -2 |w
o) [0 1 21 3P| |6, 0 0 - P |6,
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__1_34\_{2+2,‘\'73 ){_2,\;*_1\(3 3f_zf_xz+x Jo. |
o # T F 1 P F P 1 P

=[M Ny Ny N ] {8}, =[N {5],

where [N]=[N, N, N, N4]
32X 2 X
3x2 2X° e 3
NysZemie WNy=—"r
i i A

Variation of these function is shown in Fig. 5.6 (b) (Note that at node 1, N =1,

3{Yg_ = 31}(!‘ = @N_,‘ = (-MI‘ = 0 similarly at node 2,
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