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« Continuum mechanics 1s a branch of mechanics
that deals with the deformation of and
transmission of forces through materials modeled
as a continuous mass rather than as discrete
particles such as solid mechanic, fluid
thermodynamic ... etc.

 discretization 1Is the process of transferring
continuous functions, models, variables, and
equations into discrete counterparts. This process
Is usually carried out as a first step toward making
them suitable for numerical evaluation.



Discretizations

+» Model body by dividing it into an
equivalent system of many smaller bodies
or units (finite elements) interconnected at
points common to two or more elements
(nodes or nodal points) and/or boundary
lines and/or surfaces.




Types of Finite Elements 2-D (Plane) Element

1-D (Line) Element

r—

(Spring, truss, beam, pipe, etc.) (Membrane, plate, shell, etc.)

3-D (Solid) Element
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(3-D fields - temperature, displacement, stress, flow velocity)

Elements & Nodes - Nodal Quantity



Shape Functions

The values of the field variable computed at the nodes are used to
approximate the values at non-nodal points (that 1s, in the element interior)
by interpolation of the nodal values. For the three-node triangle example,
the field variable 1s described by the approximate relation

@(x, ¥) = Ny(x, ¥) @1 + Ny(x, ¥) ¢, + Ny(x, v) 05

where ¢;, @,, and @, are the values of the field variable at the nodes, and
N;. N,, and N; are the interpolation functions, also known as shape
functions or blending functions.

In the finite element approach, the nodal values of the field variable are
treated as unknown constants that are to be determined. The interpolation
functions are most often polynomial forms of the independent variables,
derived to satisfy certain required conditions at the nodes.

The mterpolation functions are predetermined, Anown functions of the
independent variables; and these functions describe the variation of the
field variable within the finite element.



Degrees of Freedom

Again a two-dimensional case with a single field variable ¢(x, v). The
triangular element described 1s said to have 3 degrees of freedom, as three

nodal values of the field variable are required to describe the field variable
everywhere 1n the element (scalar).

(o

o(x, ¥) = Ny(x, ¥) 9; + Ny(x, ¥) ¢, + N3(x, y) ¢;

In general, the number of degrees of freedom associated with a finite
element is equal to the product of the number of nodes and the number of
values of the field variable (and possibly its derivatives) that must be
computed at each node.



Stiffness Matrix

The primary characteristics of a finite element are embodied in the
element stiffness matrix. For a structural finite element. the
stiffness matrix contains the geometric and material behavior
information that indicates the resistance of the element to
deformation when subjected to loading. Such deformation may
include axial. bending, shear, and torsional effects. For finite
elements used in nonstructural analyses, such as fluid flow and heat
transfer, the term stiffness matrix 1s also used. since the matrix
represents the resistance of the element to change when subjected
to external influences.



LINEAR SPRING AS A FINITE ELEMENT

A linear elastic spring 1s a mechanical device capable of supporting axial
loading only, and the elongation or contraction of the spring is directly
proportional to the applied axial load. The constant of proportionality
between deformation and load 1s referred to as the spring constant, spring
rate, or spring stiffness k., and has units of force per unit length. As an
elastic spring supports axial loading only, we select an element coordinate
system (also known as a /ocal coordinate system) as an x axis oriented
along the length of the spring, as shown.
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(a) Linear spring element with nodes, nodal displacements, and nodal forces.
(b) Load-deflection curve.



Assuming that both the nodal displacements are zero when the spring is
undeformed. the net spring deformation is given by
0= i, — Uy

and the resultant axial force in the spring 1s

f=ko = k(u, —u,)

For equilibrium.

fi+h=0 o fi=—f

Then, in terms of the applied nodal forces as
Ji=k(u, —uy)

fr=k(u, —uy)

which can be expressed in matrix form as

k —k i . f] 1 B
e = e k=

where

k - :
[k.] = [_ ., ] Stiffness matrix for one spring element

is defined as the element stiffness matrix in the element coordinate system (or local
system), {u} 1s the column matrix (vector) of nodal displacements. and { f'} is the
column matrix (vector) of element nodal forces.
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known {F} — [K] {X} unknown

The equation shows that the element stiffness matrix for the linear spring element
i1sa 2 X 2 matrix. This corresponds to the fact that the element exhibits fwe nedal
displacements (or degrees of freedom) and that the two displacements are not
independent (that is, the body is continuous and elastic).



FEA for multiple (many) elements { F } = [K ] : {U}
/ \

Array of appiiec forces l Array of dsplacements { cne
(one %or each DOF) Matrix of for each DOF)
sIMnhesses
(O0OF x DOF)

{F } 15 “known” (loads)

[K ] 15 “known” (geometry, matenal properties. . .elements)

{U} 1s to be determuned (displacements)

This can be solved mathematically using a matrix inversion method

Fi=[x) v} - U=k {F}

(first nodal quantity)

Once the displacements {U} are known, then strains and stresses can be determined:
&= % (1-D ...more complicated for 2-D and 3-D strams)
c=E-¢

and FOS = & (second nodal quantities)
c




