

جام<u>عة</u> الم<u>ستقبل</u> AL MUSTAQBAL UNIVERSITY

	قــســـــم الامـــــــــن	
ى	ــــــــــــــــــــــــــــــــــــــ	
•	DEPARTMENT OF CYBER SECURITY	

SUBJECT:

STRUCTURED PROGRAMMING

CLASS:

1 ST STAGE

LECTURER:

DR. ABDULKADHEM A. ABDULKADHEM

LECTURE: (1)

Introduction to Structured Programming

Department of Cyber Security Structured Programming – Lecture (1) 1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

1. Introduction to Programming

Programming is the process of writing instructions that a computer can execute to perform specific tasks. These instructions are written using programming languages, which serve as a bridge between human logic and machine execution.

2. What is Structured Programming?

Structured Programming is a paradigm aimed at improving code readability, maintainability, and efficiency by organizing code into well-defined structures. It emphasizes the use of:

- **Sequential execution** (step-by-step execution of statements)
- **Selection control structures** (if-else, switch-case)
- Iteration control structures (loops: for, while, do-while)
- Modular programming (functions and procedures)

3. Why Structured Programming?

Structured Programming provides multiple advantages over unstructured approaches, including:

- Better code organization
- · Easier debugging and testing
- · Enhanced readability and reusability
- Reduced complexity
- Encourages logical thinking

4. Comparison: Structured vs. Unstructured Programming

Feature	Structured Programming	Unstructured Programming
Code Organization	Uses functions and modules	Uses global jumps (goto statements)
Readability	High	Low
Debugging	Easier	Difficult
Scalability	Highly scalable	Not scalable
Efficiency	Optimized for logical execution	May lead to inefficient execution

Department of Cyber Security Structured Programming – Lecture (1) 1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

5. Key Elements of Structured Programming

- 1. **Sequence** Executing instructions in order.
- 2. **Selection (Decision Making)** Using conditions like if-else, switch-case.
- 3. **Iteration** (Loops) Using loops like for, while, do-while.
- 4. **Modularity** Breaking down a program into functions for reusability and clarity.

6. First Example: A Simple C++ Program

Let's look at a basic C++ program that follows structured programming principles:

7. Evolution of Programming Paradigms

Structured programming was introduced as an improvement over unstructured programming (which relied heavily on goto statements). It later evolved into Object-Oriented Programming (OOP) and Functional Programming, but it remains fundamental in software development today.

8. Importance of Structured Programming in Cybersecurity

- **Secure coding practices**: Structured programming helps in writing secure, predictable code.
- Code analysis and debugging: Easier to identify vulnerabilities and logical errors.
- **Efficient algorithms**: Essential for encryption, authentication, and security-related applications.

Department of Cyber Security Structured Programming – Lecture (1) 1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

9. Summary

- Structured Programming improves readability, maintainability, and efficiency.
- It uses sequences, decisions, loops, and modularity.
- It is widely used in modern software development and cybersecurity applications.

10. Next Lectures Preview

In the upcoming lectures, we will explore fundamental concepts in C++ programming, including:

- **Introduction to Functions**: Understanding function declarations, definitions, and different types of functions (user-defined, built-in, and recursive functions).
- Working with Arrays: Basics of arrays, multi-dimensional arrays, and array manipulation techniques.
- **Introduction to Structures**: Defining and using structures, structure arrays, and applications in real-world programming.
- String Handling in C++: String operations, built-in string functions, and practical examples of string manipulation.

These topics will build a strong foundation for writing efficient and modular C++ programs.