

P a g e | 1

Department of Cyber Security

Structured Programming – Lecture (5)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security

Subject:

Structured Programming

Class:

1st stage

Lecturer:

Dr. Abdulkadhem A. Abdulkadhem

Lecture: (5)

Passing Parameters to Function by Value and by

Reference

P a g e | 2

Department of Cyber Security

Structured Programming – Lecture (5)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Passing Parameters by Value and by Reference in C++

1. Passing Parameters by Value

When passing parameters by value, a copy of the variable is sent to the function. Any

modification inside the function does not affect the original variable.

Example 1: Passing an Integer by Value

#include <iostream>

using namespace std;

void square(int num) { // 'num' is a copy of the original value

 num = num * num;

 cout << "Value inside function: " << num << endl;

}

int main() {

 int value = 5;

 square(value);

 cout << "Original value after function call: " << value << endl;

 // Remains unchanged

 return 0;

}

Output:

Value inside function: 25

Original value after function call: 5

Note: The value in main() remains unchanged because modifications occur only on the copy.

Example 2: Passing Two Variables by Value to Calculate Sum

#include <iostream>

using namespace std;

int add(int a, int b) { // Copies of 'a' and 'b' are passed

 return a + b;

}

int main() {

 int x = 10, y = 20;

 cout << "Sum: " << add(x, y) << endl;

 return 0;

}

Note: The original values of x and y remain unchanged after calling the function.

P a g e | 3

Department of Cyber Security

Structured Programming – Lecture (5)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

2. Passing Parameters by Reference

When passing parameters by reference, the function receives the actual memory address of the

variable. Any modification inside the function will affect the original variable.

Example 1: Passing an Integer by Reference

#include <iostream>

using namespace std;

void squareByReference(int &num) { // 'num' refers to the original variable

 num = num * num;

}

int main() {

 int value = 5;

 squareByReference(value);

 cout << "Original value after function call: " << value << endl; // Value

is modified

 return 0;

}

Output:

Original value after function call: 25

Note: The value in main() is modified because num is a reference to value.

Example 2: Swapping Two Variables Using Pass by Reference

#include <iostream>

using namespace std;

void swapValues(int &a, int &b) {

 int temp = a;

 a = b;

 b = temp;

}

int main() {

 int x = 10, y = 20;

 cout << "Before swapping: x = " << x << ", y = " << y << endl;

 swapValues(x, y);

 cout << "After swapping: x = " << x << ", y = " << y << endl;

 return 0;

}

Output:

P a g e | 4

Department of Cyber Security

Structured Programming – Lecture (5)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Before swapping: x = 10, y = 20

After swapping: x = 20, y = 10

Note: The values of x and y are swapped because they were passed by reference.

3. Comparison: Pass by Value vs. Pass by Reference

Feature Pass by Value Pass by Reference

Modifies Original

Value?
❌ No ❌ Yes

Performance
Slower for large data structures (copies

are created)

Faster (no copy, direct

memory access)

Data Safety Safer (no unintended modifications)
Risky (original data can be

modified)

4. When to Use Each?

 Use pass by value when the function does not need to modify the original variable (e.g.,

calculations that don’t change input values).

 Use pass by reference when the function must modify the original variable (e.g.,

swapping values, updating data).

