

Al-Mustaqbal University Department: Chemical Engineering and petroleum Industries

Class: Fourth Year

Subject: Process Control and Instrumentation

Lecturer: Dr. Abbas J. Sultan

 2^{nd} term – Lecture#6: Block Diagram Reduction of a Control System

Email: abbas.jawad@uomus.edu.iq

Block Diagram Reduction of a Control System

Rules of Block Diagram

Rule #1:

Rule #2:

Summing Junction

Rule #3:

Pick off point

Rule #4:

Cascade form (combining blocks in series)

Rule #4:

Combining blocks in parallel

$$R(s) \longrightarrow G1(s)+G2(s) \longrightarrow C(s)=R(s)G1(s)+R(s)G2(s)$$

Rule #5:

Feedback form

$$E(s)=R(s)-C(s)H(s) \\ And \\ C(s)=E(s)G(s) \\ \\ C(s)=R(s)G(s)-C(s)H(s)G(s) \\ C(s)+C(s)H(s)G(s)=R(s)G(s) \\ C(s)(1+H(s)G(s))=R(s)G(s) \\ \\ \frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)H(s)} \\ \\$$

Feedback form

Rule #6:

Moving Blocks

Case #1

R1(s)
$$\xrightarrow{+\uparrow}$$
 $G(s)$ $G(s) = R1(s)G(s) + R2(s)$ $\xrightarrow{\frac{1}{G(s)}}$ $R2(s)$

Case #3

Example #1: Reduce the below block diagram to a single transfer function.

Parallel Form

Feed-back Form

$$R(s) \longrightarrow \begin{array}{c} G1(s) \ G2(s) \ G3(s) \\ \hline 1 + G2(s) \ G3(s) \ (H1(s) - H2(s) + H3(s)) \end{array} \longrightarrow C(s)$$

$$G(s) = \frac{C(s)}{R(s)} = \frac{G1(s) G2(s) G3(s)}{1 + G2(s) G3(s) (H1(s) - H2(s) + H3(s))}$$

Example #2: Reduce the below block diagram to a single transfer function.

R(s)
$$\longrightarrow \frac{50S - 100}{S^3 + S^2 + 150S - 100}$$
 \longrightarrow C(s)

G(s) =
$$\frac{C(s)}{R(s)}$$
 = $\frac{50S - 100}{S^3 + S^2 + 150S - 100}$

Example #3: Reduce the below block diagram to a single transfer function.

$$R(s) \longrightarrow \frac{G1G2G3+G3}{1+H1G1} \longrightarrow C(s)$$

$$G(s) = \frac{C(s)}{R(s)} = \frac{G1G2G3+G3}{1+H1G1}$$

Example #4: Reduce the below block diagram to a single transfer function.

$$\begin{array}{c|c} & & & & \\ \hline S^3 + 1 & & \\ \hline 2S^4 + S^2 + 2s & & \\ \hline \end{array}$$

G(s) =
$$\frac{C(s)}{R(s)}$$
 = $\frac{S^3 + 1}{2S^4 + S^2 + 2s}$

Example #5: Reduce the below block diagram to a single transfer function.

Moving Blocks

Case (3)

