Example-5:

If the code of Example-4 is connected to BSC with P_e=0.1 as shown below, find probabilities of binary "0" and binary "1" at both the input and output of the channel.

Solution:

From the results of Example-4 we have the code table below. Now to find P(0) and P(1) at the encoder output, we must average the lengths of zeros $(l_{i,0})$ and the lengths of ones $(l_{i,1})$ and then find their probabilities using the following formulas:

$$L = \sum_{x} P(x_i) \cdot l_i \qquad L_0 = \sum_{x} P(x_i) \cdot l_{i,0} \qquad L_1 = \sum_{x} P(x_i) \cdot l_{i,1}$$

$$P(0) = \frac{L_0}{L} \qquad P(1) = \frac{L_1}{L} \qquad \text{or} \qquad P(1) = 1 - P(0)$$

It is also clear that: $L = L_0 + L_1$ since $l_i = l_{i,0} + l_{i,1}$

Symbol x_i	Probability $P(x_i)$	Assigned Codeword	l_i	No. of 0's $l_{i,0}$	No. of 1's $l_{i,1}$
<i>x</i> ₄	0.3	00	2	2	0
<i>x</i> ₂	0.2	11	2	0	2
<i>x</i> ₅	0.15	010	3	2	1
<i>x</i> ₇	0.12	100	3	2	1
<i>x</i> ₃	0.1	101	3	1	2
<i>x</i> ₆	0.08	0110	4	2	2
<i>x</i> ₁	0.05	0111	4	1	3

Using the above formulas one can find that:

We already have L=2.63 Bits/Symbol,

$$L_0 = \sum_x P(x_i) \cdot l_{i,0} = 1.45 \qquad L_1 = \sum_x P(x_i) \cdot l_{i,1} = 1.18$$
Then $P(0) = \frac{L_0}{L} = 0.55 \qquad P(1) = \frac{L_1}{L} = 0.45 \qquad \text{or} \quad P(1) = 1 - P(0) = 1 - 0.55 = 0.45$