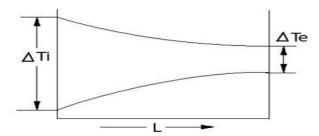
Choose the correct answer for the following

1. The steam condenser is a thermal power plant is a heat exchanger
ofc
(a) Direct contact
(b) Regenerator
(c) Recuperator
(d) Non of these
2. The normal automobile radiator is a heat exchanger of the type
d
(a) Direct contact
(b) Parallel flow
(c) Counter flow
(d) Cross flow
3. Choose the correct statement with respect to a counter-flow heat
exchangerc
(a) Both the fluid at the inlet are in their coldest state
(b) Both the fluids at the exit are in their hottest state
(c) Both the fluids at the inlet are in their hottest state
(d) One fluid hottest and the other is coldest at inlet
4. The requirement of transfer of a large heat is usually met by
d
(a) Increase the length of the tube
(b) Decreasing the diameter of the tube
(c) Increase the number of tubes
(d) Having multiple tube o shell passes
5. The shell of a tuber heat exchanger is provided with exansion
bellows toc
(a) facilitate an increase in the length of the boiler shell
(b) impart structural strength to exchanger.
(c) account for the uneven expansion of shell and tube bundles
(d) reduce the pressure drop

6. In a heat exchanger with one fluid evaporating or condensing, the
surface area required is least inb
(a) Parallel flow
(b) <u>Counter flow</u>
(c) Cross flow
(d) Same in parallel, counter and cross flow arrangements
7. In a counter- flow heat exchanger, cold fluid enters at 30°C and
leaves at 50°C, whereas the hot fluid enters at 150°C and leaves at
130°C. The mean temperature difference for this case is
C
(a) 20°C
(b) 80°C
(c) <u>100°C</u>
(d) indeterminate
8. Multi-pass heat exchangers are used toc
(a) Reduce the pressure drop
(b) Get a compact unit
(c) Obtain a high heat transfer coefficient
(d) Facilitate a very large temperature drop through the tube wall
9. In a heat exchanger, the hot liquid enters with a temperature of
180°C and leaves at 160°C. The cooling fluid enters at 30°C and
leaves at 110°C. The capacity ratio of the heat exchanger is
a
(a) <u>0.25</u>
(b) 1.5
(c) 0.33
(d) 0.2
10. A cross flow type air heater has an area of 50m ² the overall
transfer coefficient is 100W/m ² .°C and heat capacity of both hot
and cold stream is $1000W/^{\circ}C$. The value of NTU isc
(a) 1000
(b) 500
(c) <u>5</u> (d) 0.2

11. Which of the following terms is not associated with heat
exchanger?b
(a) Fouling
(b) Mc Adam's correction factor
(c) NTU (d) Capacity ratio
12. The overall heat transfer coefficient for a shell and tube heat
exchanger for clean surfaces is U _o =400W/m ² .K. The fouling after
one year of operation is found to be h _o =2000W/m ² .K. The overall
heat transfer coefficient at this time isc
(a) $1200W/m^2$.K (b) $894W/m^2$.K (c) $333W/m^2$.K (d) $287W/m^2$.K
13. A correction of LMTD is necessary in case ofa heat
exchanger.
(a) <u>Cross flow</u>
(b) Parallel flow
(c) Counter current
(d) All of theses
14. Consider the following is not an advantage of recuperator type
heat exchanger.
1. More economic
2. More suitable for stationary plants
3. High heat transfer coefficient
4. Less maintenance
Select the correct answer code:d
(a) 1 and 3 (b) 1 and 2 (c) 2 and 4 (d) 3 and 4
15. Air heaters are an example ofa
(a) Regenerator type heat exchangers
(b) Recuperative type heat exchangers
(c) Open type heat exchangers
(d) Combination of regeneration and recuperative type heat
exchangers


16. Evaporators in ice plant is an example ofb
(a)Regenerator type heat exchangers
(a) Recuperative type heat exchangers
(b) Open type heat exchangers
(c) Combination of regeneration and recuperative type heat
exchangers
17. Fouling factor is usedd
(a) In heat exchanger design as a safety factor
(b) In case of Newtonian fluids
(c) When a liquid exchanges heat with a gas
(d) None of theses
18. In a shell and tube heat exchanger, baffles are provided on the
shell side tod
(a) Improve heat transfer.
(b) Provide support for tubes
(c) Prevent stagnation of shell side fluid
(d) <u>All of these</u>
19. The ratio of actual heat transfer to the maximum possible heat
transfer is calledb
(a) Efficiency of heat exchanger
(b) Effectiveness of heat exchanger
(c) Performance index of heat exchanger
(d) None of these
20. The mathematical range of capacity ratio isa
(a) $0 \text{ to } 1$ (b) -1 to 1 (c) 1 to infinity (d) 0 to infinity
21. Maximum effectiveness of a parallel flow heat exchanger could be
a
(a) <u>0.5</u> (b) 1.0 (c) 0.65 (d) 0.8
22. If a heat exchanger LMTD is zero then heat transfer surface
becomec
(a) Maximum (b) minimum (c) infinity (d) moderate

- **23.** In a two-fluid heat exchanger, the inlet and outlet temperature of the hot fluid are 65°C and 40°C respectively. For the cold fluid these are 15°C and 42°C. The heat exchanger is a ___b___.
- (a) Cross-flow heat exchanger
- (b) Counter-flow heat exchanger
- (c) Parallel-flow heat exchanger
- (d) None of theses
- 24. In case of heat exchanger, the value of LMTD should be ____b__.
- (a) As small as possible
- (b) As large as possible
- (c) Constant
- (d) Has a specific level of temperature which depends on the size of the heat exchanger
- **25.** How is the logarithmic mean temperature difference (LMTD) calculated for heat exchangers? _____d___.

Where ΔT_i = temperature difference between hot and cold fluid at inlet of heat exchanger.

 $\Delta \text{T}_{\text{o}}\text{=}$ temperature difference between hot and cold fluid at exit of heat exchanger.

- (a) $Ln(\Delta T_i \Delta T_e)$
- (b) $Ln(\Delta T_e \Delta T_i)$
- (c) $(\Delta T_i \Delta T_e)/(ln(\Delta T_e/ln\Delta T_i))$
- (d) $(\Delta T_i \Delta T_e)/(ln(\Delta T_i/ln\Delta T_e))$
- **26.** Which type of flow in heat exchanger is represented in below diagram? ___a__.

Temperature Profile of Fluids in Heat Exchanger

(a) Parallel flow heat exchanger

(b) Counter flow heat exchanger
(c) Cross flow heat exchanger
(d) None of the above
27. The arithmetic mean temperature difference for parallel flow
heat exchanger is given asd
(a) $\Delta T_{am} = (\Delta T_i - \Delta T_e)$
(b) $\Delta T_{am} = (\Delta T_i + \Delta T_e)$
(c) $\Delta T_{am} = (\Delta T_i - \Delta T_e)/2$
(d) $\Delta T_{am} = (\Delta T_i + \Delta T_e)/2$
28. When is the arithmetic mean temperature difference of heat
exchanger used instead of LMTD?c
(a) When the temperature profiles of two fluids of heat exchanger
are sloping downward with curve
(b) When the temperature profiles of fluids of heat exchanger are
slop upward with curve
(c) When the temperature profiles of two fluids of heat exchanger
<u>are straight</u>
(d) None of the above
29. How can the arithmetic mean temperature and LMTD of a same
heat exchanger be compared? b
(a) The arithmetic mean temperature difference is less than LMTD of
a same heat exchanger.
(b) The arithmetic mean temperature difference is more than LMTD
of a same heat exchanger
(c) The arithmetic mean temperature difference and LMTD of a same
heat exchanger are equal
(d) None of the above
30. Which of the following temperature difference is safer than other
to consider in designing of heat exchanger?b
(a) Arithmetic Mean Temperature Difference (ΔT_{am})
(b) Logarithmic Mean Temperature Difference (LMTD)
(c) Both have nothing to do with safety
(d) Other

31. For the same inlet and exit temperatures of two fluids, the LMTD	
for counter flow is alwaysb	
(a) Smaller than LMTD for parallel flow	
(b) Greater than LMTD for parallel flow	
(c) Same as LMTD for parallel flow	
(d) Unpredictable	
32. For the same heat transfer Q and same overall heat transfer	
coefficient U _o , surface area required for parallel flow heat	
operation is alwaysb	
(a) Less than that for counter flow	
(b) More than that for counter flow	
(c) Same as that for counter flow	
(d) Unpredictable	
33. In parallel flow heat exchangers,c	
(a) The exit temperature of hot fluid is always equal to the exit	
temperature of cold fluid.	
(b) The exit temperature of the hot fluid is always less than the exit	
temperature of cold fluid	
(c) The exit temperature of hot fluid is always more than the exit	
temperature of cold fluid	
(d) We cannot predict comparison between exit temperatures of hot	
fluid and cold fluid	
34. For the same heat transfer Q and same overall heat transfer	
coefficient Uo, surface area required for cross flow operation is	
alwaysa	
(a) Less than LMTD for parallel flow	
(b) More than LMTD for parallel flow	
(c) Same as LMTD for parallel flow	
(d) Unpredictable	

35. A heat exchanger transfers heat from one fluid to another
b
(a) Solid (b) <u>fluid</u> (c) solid & fluid (d) none
36. Latent hat is transferred in a heat exchanger duringc
(a) Heating (b) cooling (c) <u>phase change</u> (d) none
37. Sensible heat is transferred in a heat exchanger likea
(a) <u>Cooler</u> (b) boiler (c) condenser (d) None
38. In a direct contact heat exchanger, there isc
(a) Mass transfer
(b) Heat transfer
(c) <u>Heat & mass transfer</u>
(d) None
39. The direct contact heat exchanger isc
(a) Boiler
(b) Condenser
(c) <u>Desert cooler</u>
(d) None
40. In a regenerator heat exchangerb
(a) Both hot and cold fluids are passed simultaneously
(b) First hot fluid & the cold fluid is passed
(c) Can't say
(d) None
41. The operation of a regenerator heat exchanger isb
(a) Continuous
(a) Continuous
(a) Continuous (b) Intermittent
(a) Continuous (b) Intermittent (c) Both continuous & intermittent
(a) Continuous (b) Intermittent (c) Both continuous & intermittent (d) None
 (a) Continuous (b) Intermittent (c) Both continuous & intermittent (d) None 42. In a recuperator heat exchanger, the hot & cold fluidb
 (a) Continuous (b) Intermittent (c) Both continuous & intermittent (d) None 42. In a recuperator heat exchanger, the hot & cold fluidb (a) Mixed physically

43. Which of the following is the recuperator heat exchanger?
a
(a) <u>Automobile radiator</u>
(b) Desert cooler
(c) Cooling tower
(d) None
44. In a parallel flow heat exchanger, the angle between hot and cold
fluid isc
(a) 90° (b) 180° (c <u>) 0°</u> (d) None
45. In counter flow heat exchanger, the angle between hot and cold
fluids isb
(a) 90° (b) <u>180°</u> (c) 90° (d) None
46. In a cross flow heat exchanger, the angle between hot and cold
fluids isa
(a) <u>90°</u> (b) 180° (c) 0° (d) None
47. In a condenser, the temperature of the hot fluid isc
(a) Decreasing
(b) Increasing
(c) Remains constant (d) None
48. In a condenser, the temperature of the cold fluid isb
(a) Decreasing
(b) Increasing
(c) Remains constant
(d) None
49. In a boiler, the temperature of the hot fluid isa
(a) <u>Decreasing</u>
(b) Increasing
(c) Remains constant
(d) None
50. In a boiler, the temperature of the boiling fluid isc
(a) Decreasing
(b) Increasing
(c) Remains constant (d) None

51. Rate of transfer by condensing fluid isb
(a) $\dot{m}Cp\Delta T$ (b) $\dot{m}h_{fg}$ (c) $\dot{m}\Delta T$ (d) None
52. The sequence of the modes of heat transfer in case of a heat
exchanger arec
(a) Cond. + conv. + rad.
(b) Conv. +rad. + conv.
(c) Conv. + cond. + conv.
(d) None
53. The effectiveness of a parallel and counter flow heat exchanger is
of same value in ab
(a) Radiator
(b) <u>Condenser</u>
(c) Pre-heater
(d) None
54. Use a correction factor 'F' to calculate the rate of heat transfer in
case of ac (a) Parallel flow heat exchanger
(b) Counter flow heat exchanger
- · ·
(c) <u>Cross flow heat exchanger</u> (d) None
55. The heat capacity ratio 'C' in heat exchanger is zero in case of a
c (a) Radiator (b) Pre-heater (c) <u>Condenser</u> (d) None
56. In case of a 1:1 heat exchanger, usea
(a) LMTD (b) NTU (c) LMTD or NYU (d) None
57. The equation of LMTD isc
(a) $(\Delta T_a + \Delta T_b)/ln(\Delta T_a/\Delta T_b)$
(a) $(\Delta T_a + \Delta T_b)/\ln(\Delta T_a/\Delta T_b)$ (b) $(\Delta T_a \Delta T_b)/\ln(\Delta T_a/\Delta T_b)$
(c) $(\Delta T_a - \Delta T_b)/ln\left(\frac{\Delta T_a}{\Delta T_b}\right)$ (d) None

58. Heat exchanger effectiveness isa
(a) ≤ 1.0 (b) =1.0 (c) > 1.0 (d) None
59. In condensers/boilers, heat capacity ratio isb
(a) Infinity (b) Zero (c) 1.0 (d) None
60. The direct contact heat exchanger operates underb
(a) Transient conditions
(b) Steady state conditions
(c) Transient /steady state conditions
(d) None
61. The recuperator heat exchangers operate underb
(a) Transient conditions
(b) Steady state conditions
(c) Transient/ steady state conditions
(d) None
62. The regenerator heat exchanger operates undera
(a) <u>Transient conditions</u>
(b) Steady state conditions
(c) Transient/steady state conditions
(d) None
63. The overall heat transfer coefficient in condensers and boilers is
a
(a) <u>High</u> (b) Low (c) High & Low (d) None
64. Do we consider the conduction heat transfer in the tube in
between the two fluids?a
(a) <u>No</u> (b) yes (c) yes/No (d) None
65. The specific heat of hot fluid in a heat exchanger isc
(a) Increasing (b) Decreasing (c) No change (d) None
66. The overall heat transfer coefficient in a heat exchanger isc
(a) Increasing
(b) Decreasing
(c) No change
(d) None
67. The correction 'F' for multi-pass exchangers depends onc

(a) P+R (b) P/R (c) <u>P & R</u> (d) None
68. The parameter 'P' in a multi- pass heat exchanger is the ratio of
c
(a) Rise in temperature of cold fluid and fall of temperature of hot
fluid.
(b) Fall of temperature of hot fluid to rise of temperature of cold
fluid
(c) Rise of temperature of cold fluid to difference between inlet
temperatures of hot and cold fluids
(d) None
78. Factor 'R' in multi-pass heat exchanger is the ratio ofb
(a) Rise in temperature of cold fluid and fall of temperature of hot fluid
(b) Fall of temperature of hot fluid to rise of temperature of cold fluid
(c) Rise of temperature of cold fluid to difference between inlet
(d) None
79. The change in correction factor 'F' with the increasing value of Prameter
'R' at ficed value of parameter 'P'b
(a) Constant (b) Increases (c) Decreases (d) None
80. The change in correction factor 'F' with the increasing value of
parameter 'P' at a fixed value of parameter 'R'c
(a) Constant (b) Increases (c) <u>Decreases</u> (d) None
81. Overall heat transfer coefficient is associated withd
(a) Conduction (b) Convection (c) Radiation (d) None
82. Overall heat transfer coefficient is associated withd
(a) Conduction and radiation
(b) Conduction and radiation
(c) Radiation, convection and conduction
(d) <u>None</u>
83. Overall heat transfer coefficient is associated withd
(a) Conduction and radiation

(b) Convection and conduction
(c) Radiation and convection (d) <u>None</u>
 84. Thermal contact resistance in conduction heat transfer is due tob (a) Polished surfaces in contact (b) Rough surface in contact (c) Smooth surface in contact (d) None
85. Thermal contact resistance decreases the temperaturec (a) Linearly (b) Parabolic (c) Instantaneously (d) None 86. Conduction heat flux isb
(a) $-kAdT/dx$ (b) $-k dT/dx$ (c) $+kAdT/dx$ (d) None
87. Convection heat flux isc
(a) $hAdT$ (b) h A (c) $\underline{h}\ dT$ (d) None
88. The expression for overall heat transfer coefficient for a single wall construction isa
(a) $\frac{1}{u} = \frac{1}{h_i} + \frac{x}{k} + \frac{1}{h_o}$
(b) $\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{x}{kA} + \frac{1}{h_o A_o}$
(c) $\frac{1}{UA} = \frac{1}{h_i A_o} + \frac{x}{kA} + \frac{1}{h_o A_i}$
(d) None
90. Temperature variation in a pipe isc
(a) Linear(b) Parabolic(c) <u>Logarithmic</u>(d) None

91. Temperature variation in a pipe isa					
(a) <u>Linear</u> (b) Parabolic (c) Logarithmic (d) None					
92. In the heat interchanger, finned tubes are used for one of the following purposesa					
(a) Increasing the surface area					
(b) Introducing the cold fluid					
(c) Introducing the cold fluid					
(d) Reducing the size of apparatus					
94. The general equation for heat transfer rate \dot{Q} , is expressed as:c					
(a) $A\Delta T/U$ (b) $U/A\Delta T$ (c) $\underline{AU\Delta T}$ (d) $UA/\Delta T$					
95. For heat insulation, one of the following is usedc					
(a) Al. wire (b) Cu foils (c) Glass wool (d) Fe filling					
96. In the double pipe heat exchanger, the two tubes are arranged in one of					
the following waysa					
(a) <u>Coaxial</u> (b) Concentric (c) Parallel (d) series					
97. Which heat interchanger consists of bent tubes?a					
(a) <u>Double pipe heat exchanger</u>					
(b) Floating head two-pass heater					
(c) Multi-pass heater					
(d) Tubular heater					
98. Fourier's law is applicable to one of the following types of heat flow.					
a					
(a) Conduction (b) Convection (c) Radiation (d) Emission					
99. In the convection process for process for a liquid in a tube, one of the					
following offers great resistanced					
(a) Central layer of liquid					
(b) Liquid layer adhered to the metal wall					
(c) Metal wall					
(d) Stagnant liquid layer between viscous and turbulent flow.					