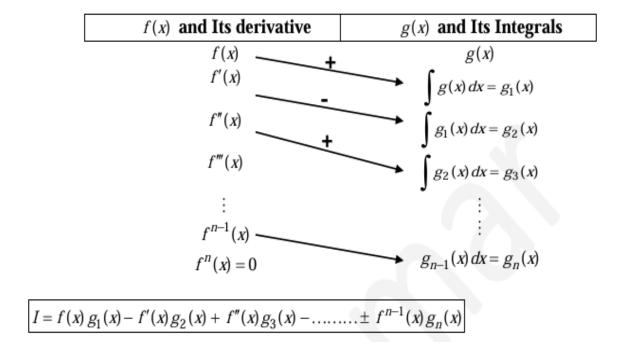


Al-Mustaqbal University / College of Engineering & Technology

Class: first


Subject: integral Mathematics/Code: UOMU024024

Lecturer: M.Sc. Alaa Khalid Lecture name: method of integration

Lecture: 6 2ndterm

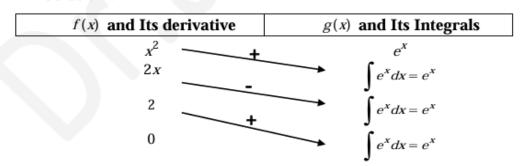
Tabular Integration

Consider the integral of the form $\int f(x)g(x)dx$ in which $\int f(x)$ can be differential repeatedly to Zero and g(x) can be integral repeatedly without difficulty Tabular integration save a great deal of work as natural method consider from integration

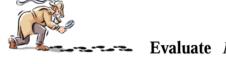
Email: alaa.khalid.abdalreda@uomus.edu.ig

Al-Mustaqbal University / College of Engineering & Technology

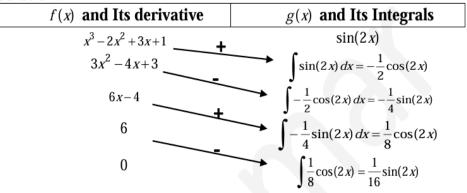
Class: first


Subject: integral Mathematics/Code: UOMU024024

Lecturer: M.Sc. Alaa Khalid Lecture name: method of integration


> Lecture: 6 2ndterm

Solution :-



$$I = \int x^2 e^x dx = x^2 e^x - 2xe^x + 2e^x + c$$

Evaluate
$$I = \int (x^3 - 2x^2 + 3x + 1)\sin(2x) dx$$

Solution:

 $I = \dots$

Email: alaa.khalid.abdalreda@uomus.edu.iq

Al-Mustaqbal University / College of Engineering & Technology

Class: first

Subject: integral Mathematics/Code: UOMU024024

Lecturer: M.Sc. Alaa Khalid Lecture name: method of integration

Lecture: 6 2ndterm

$$y = \int x^2 e^{4x} dx$$

f(x) D	g (x) I
x ²	e ^{4x}
2 x	$\frac{1}{4}e^{4x}$
2	$\frac{1}{16} e^{4x}$
0	$\frac{1}{64}e^{4x}$

$$= \frac{1}{4} x^2 e^{4x} - \frac{1}{8} x e^{4x} + \frac{1}{32} e^{4x} + c$$

Home Work:

Find $\int x^3 \sin x \, dx$?