

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.15, Bode Plot Method.

Bode Plot Method

Factor 1 : System Gain 'K'

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.15, Bode Plot Method.

Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod
2nd term – Lecture No.15, Bode Plot Method.

Factor 2 : Poles or Zeros at the Origin (jω)^{± P}

for `P' number of poles at the origin
$$G(s)H(s) = \frac{1}{s^P}$$

$$G(j\omega)H(j\omega) = \frac{1}{\omega} \cdot \frac{1}{\omega} \dots P \text{ times}$$

$$\therefore |G(j\omega)H(j\omega)| = \frac{1}{\omega} \cdot \frac{1}{\omega} \dots P \text{ times} = \frac{1}{(\omega)^P}$$

$$|G(j\omega)H(j\omega)| \text{ in } dB = 20 \text{ Log } \frac{1}{(\omega)^P} = 20 \text{ Log } (\omega)^{-P} = -20 \text{ x P Log } \omega$$

So this is a straight line of slope – 20 x P dB/ decade but again intersecting with 0 dB line at $\omega = 1$.

Key Point: Therefore magnitude plot for 'P' poles at the origin gives a family of lines passing through intersection of $\omega = 1$ and 0 dB line having slope $[-20 \times P]$ dB/decade as shown in figure (16-1)

Fig. (16-1): Magnitude plot of poles at the origin

Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod
2nd term – Lecture No.15, Bode Plot Method.

for P number of zeros at the origin

$$G(s)H(s) = s^{P}$$

$$\therefore \qquad G(j\omega)H(j\omega) = j\omega \cdot j\omega \cdot j\omega \dots P \text{ time}$$

$$\therefore$$
 | G(j ω)H(j ω) | = ω ^P

∴ Magnitude in dB = $20 \times P \text{ Log } \omega$

i.e. Slope = $+20 \times P \, dB/decade$

Key Point: Each zero at the origin increases the magnitude at a rate of + 20 dB/decade.

Figure (16-2): Magnitude plot of zeros at the origin

Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term - Lecture No.15, Bode Plot Method.

Phase Angle Plot: Consider 1 pole at the origin

$$G(s)H(s) = \frac{1}{s}$$
 $G(j\omega)H(j\omega) = \frac{1}{j\omega}$

$$\therefore \qquad \angle G(j\omega)H(j\omega) = \angle \frac{1}{j\omega} = \frac{0^{\circ}}{90^{\circ}} = -90^{\circ}$$

For 2 poles at origin,

$$G(s)H(s) = \frac{1}{s^2}$$

$$\therefore \qquad G(j\omega)H(j\omega) = \frac{1}{j\omega} \cdot \frac{1}{j\omega}$$

Key Point: In general P number of poles at the origin contribute $-90^{\circ} \times P$ angle to overall phase angle plot. This contribution is constant irrespective of $\dot{\omega}$.

Similarly for a zero at the origin,

$$G(s)H(s) = s$$

i.e.
$$G(j\omega)H(j\omega) = j\omega$$

$$\therefore \qquad \angle G(j\omega)H(j\omega) = \angle 0 + j\omega = + \tan^{1} \frac{\omega}{0} = + 90^{\circ}$$

Key Point: In general `P' number of zeros at the origin, the total angle contribution is $+90^{\circ} \times P$, irrespective of value of ω .

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.15, Bode Plot Method.

Key Point: In general `P' number of zeros at the origin, the total angle contribution is $+90^{\circ} \times P$, irrespective of value of ω .

Fig. (16-3) phase angle plot

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term - Lecture No.15, Bode Plot Method.

Example: Consider G(s)H(s) = $\frac{10}{s}$ so G(j\omega)H(j\omega) = $\frac{10}{j\omega}$

Factor	W _c	Slope	Effect on magnitude plot	
K = 10	-	0 dB / dec	Shift up by 20 log 10 = 20 dB/dec	
1/ s	-	-20 dB / dec	Slope = 0 − 20 = -20 dB/dec	

ω	Contribution by K	By 1 pole at origin	Resultant ϕ_R
0	0°	- 90°	– 90°
10	O°	– 90°	– 90°
40	0°	- 90°	- 90°
1000	0°	- 90°	- 90°
∞	0°	- 90°	- 90°

So phase angle plot is straight line parallel to X-axis as shown with phase angle - 90°.

Fig. (16-4) phase angle plot

Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term - Lecture No.15, Bode Plot Method.

Factor 3: Simple Poles or Zeros (First Order Factors)

The factor is represented as $(1 + Ts)^{\pm 1}$ i.e. $(1 + j\omega T)^{\pm 1}$

Let us start with a simple pole

G(s) H(s) =
$$(1 + Ts)^{-1} = \frac{1}{(1 + Ts)}$$

G(j\omega) H(j\omega) = $\frac{1}{1 + Tj\omega}$
 $|G(j\omega) H(j\omega)| = \frac{1}{\sqrt{1 + (\omega T)^2}} = \left[\sqrt{1 + (\omega T)^2}\right]^{-1}$

∴ In dB magnitude =
$$20 \text{ Log} \left[\sqrt{1 + (\omega T)^2} \right]^{-1}$$

= $-20 \text{ Log} \sqrt{1 + \omega^2 T^2} \text{ dB}$

The approximation is,

i) For low frequency range $\omega << \frac{1}{T}$ i.e. $\omega^2 T^2 << 1$ hence can be neglected.

$$\therefore$$
 Magnitude in dB = -20 Log 1 = 0 dB.

So for low frequencies it is straight line of 0 dB only. Thus the contribution by such factor can be completely neglected for low frequency range, as it is very small.

ii) For high frequency range
$$\omega >> \frac{1}{T}$$
 :: $1 << \omega^2 T^2$

Magnitude in dB = $-20 \text{ Log } \omega \text{ T} \text{ dB}$

i.e. it is straight line of slope - 20 dB/ decade.

This frequency at which change of slope from 0 dB to – 20 dB/decade occurs is called Corner Frequency, denoted by ω_{c}

$$\therefore \qquad \qquad \omega_{c} = 1/T$$

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term - Lecture No.15, Bode Plot Method.

For a simple zero, i.e. first order zero,

$$G(s)H(s) = (1 + Ts)$$
 i.e. $G(j\omega)H(j\omega) = (1 + j\omega T)$

$$|G(j\omega)H(j\omega)| = \sqrt{1 + (\omega T)^2}$$

∴ Magnitude in dB = 20 Log
$$\sqrt{1 + \omega^2 T^2}$$
 · dB

The magnitude plot for simple zero is a straight line of 0 dB upto $\omega_C = 1/T$ and then straight line of slope + 20 dB/decade for all frequencies more than corner frequency.

Subject: Control Engineering Fundamentals / Code (MU0223003) $\,$

Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term - Lecture No.15, Bode Plot Method.

Phase Angle Plot: Consider a simple pole

$$G(s)H(s) = \frac{1}{1+Ts}$$

$$G(j\omega)H(j\omega) = \frac{1}{1+j\omega T} :: \angle G(j\omega)H(j\omega) = \frac{0^{\circ}}{\tan^{-1}\frac{\omega T}{1}} = -tan^{-1}\omega T$$

While for a simple zero,

$$G(s)H(s) = 1 + Ts$$

$$G(j\omega)H(j\omega) = 1 + j \omega T :: \angle G(j\omega)H(j\omega) = tan^{-1} \frac{\omega T}{1} = + tan^{-1} \omega T$$

ω	\pm tan ⁻¹ ωT (+ for zero, – for pole)		
$0.1\omega_{\rm C} = \frac{1}{10T}$	± 5.71°		
$0.5\omega_{\rm C} = \frac{1}{2T}$	± 26.6°		
$\omega_{\rm C} = \frac{1}{T}$	± 45°		
$2 \omega_{\rm C} = \frac{2}{\rm T}$	± 63.4°		
10 $\omega_{\rm C} = \frac{10}{\rm T}$	± 84.3°		

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.15, Bode Plot Method.

Example 10.2: Sketch the Bode Plot for the system having

$$G(s)H(s) = \frac{20}{s(1+0.1 s)}$$

K = 20 : Its magnitude = 20 Log 20 = + 26 dB

factor	W _c	slope	Effect on magnitude plot
K=20	-	0 dB/dec	Shift up by 20 log 20 = 26 dB
$\frac{1}{s}$	1	-20 dB/dec	Slope = 0 – 20 = -20 dB/dec
$\frac{1}{1+0.1s}$	10	-20 dB/dec	Slope = -20 – 20 = -40 dB/dec

For the phase angle plot prepare the table of angles as below:

ω in rad/sec	φ due to 1 pole at origin	φ due to simple pole = - tan ⁻¹ 0.1ω	φ _R Resultant
0.1	- 90°	- 0.57°	- 90.57°
0.5	- 90°	- 2.86°	- 92.86°
1	- 90°	- 5.7°	- 95.7°
2	- 90°	- 11.3°	- 101.3°
10	- 90°	– 45°	– 135°
50	- 90°	- 78.79°	– 168°

