

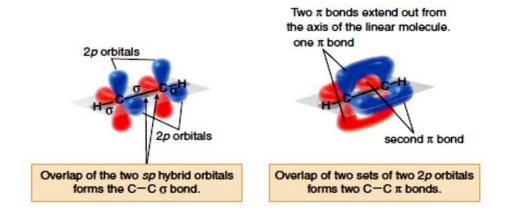
Organic Chemistry

1st stage

Asst. Lect.Zahraa Hazim Hamid

Lecture 4: Alkynes

Department of Medical Physics


Alkynes

Molecules of alkyne series of hydrocarbon are characterized by having two adjacent carbon atoms joined to one another by a triple bond. The carbon-carbon triple bond is unsaturated and highly reactive toward the reagents that double bonds react with.

The general formula is CnH2n-2.

Each carbon of a triple bond is sp hybridized and linear, and all bond angles are 180°C

The triple bond of an alkyne consists of one σ bond and two π bonds.

tylene)
e

$$HC \equiv CCH_3$$
 Propyne

$$HC \equiv CCH_2CH_3$$
 1-Butyne

$$HC \equiv C(CH_2)_2CH_3$$
 1-Pentyne

$$HC \equiv C(CH_2)_3CH_3$$
 1-Hexyne

$$HC \equiv C(CH_2)_4CH_3$$
 1-Heptyne

$$HC \equiv C(CH_2)_5CH_3$$
 1-Octyne

$$HC \equiv C(CH_2)_6CH_3$$
 1-Nonyne

$$HC \equiv C(CH_2)_7 CH_3$$
 1-Decyne

Nomenclature

The alkynes are named according to two systems. In one, they are considered to be derived from acetylene by replacement of one or both hydrogen atoms by alkyl group.

$$H-C \equiv C-C_2H_5$$
 (Ethylacetylene) 1-Butyne
 $CH_3-C \equiv C-CH_3$ (Dimethylacetylene) 2-Butyne

 $CH_3 - C \equiv C - CH(CH_3)_2$ (Isopropylmethylacetylene) 4-Methyl-2-pentyne

For more complicated alkyne the IUPAC names are used. The rules are exactly as for the alkenes, except that the ending **-yne** is used in place of **-ene**.

Examples

$$HC \equiv CCH_2CH_3$$
 $CH_3C \equiv CCH_3$ 1-Butyne 2-Butyne $CH_3C \equiv CCH_2CH_3$ $CH_3CH = CHCH_2C \equiv CH$ 2-Pentyne 4-Hexen-1-yne CH_3 CH_3 $CH_3CHCH_2C \equiv CCH_2CH_3$ $CH_3C \equiv CCH_2CHCH_2CH_3$ $6\text{-Methyl-3-heptyne}$ $5\text{-Methyl-2-heptyne}$

Physical Properties of Alkynes

- 1. Alkynes are low-polarity compounds with physical properties similar to alkanes and alkenes.
- 2. They are insoluble in water but dissolve in low-polarity organic solvents such as ether, benzene, and carbon tetrachloride.
- 3. They are less dense than water.
- 4. Their boiling points increase with the number of carbon atoms
- 5. Acetylene (HC≡CH) is a colorless gas with an ethereal odor that burns in oxygen to form CO₂ and H₂O.
- 6. The combustion of acetylene releases more energy per mole of product than other hydrocarbons.
- 7. It burns with a very hot flame, making it an excellent fuel for welding.