

Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2<sup>nd</sup> term – Lecture No.15, Bode Plot Method.

#### **Bode Plot Method**

## **Objectives:**

At the end of this lesson, students will be able to:

- 1. Define the frequency response of a system.
- 2. Use the Bode plot method to find a graph of the frequency response of the system
- 3. Comment on the stability of the system.

## **Basics of Frequency Domain Analysis**

Basic of any frequency response is to plot magnitude M and angle  $\phi$  against input frequency ' $\omega$ '. When ' $\omega$ ' is varied from 0 to  $\infty$  there is wide range of variations in M and  $\phi$ 

Such frequency domain transfer function can be obtained by substituting  $j\omega$  for 's' in the transfer function G(s) of the system.

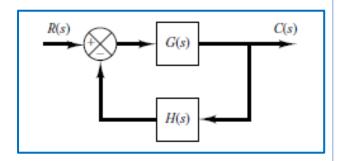
$$G(j\omega) = G(s)|_{s=j\omega}$$
 = Frequency domain transfer function

$$G(j\omega) = M \angle \phi$$
 $M = Magnitude \rightarrow f(\omega)$ 
 $\phi = Phase angle \rightarrow f(\omega)$ 
 $\phi = Loginary part of G(j\omega)$ 
 $\phi = Loginary part of G(j\omega)$ 
 $\phi = Loginary part of G(j\omega)$ 
 $\phi = Loginary part of G(j\omega)$ 

## Example 15.1: find M $\sqsubseteq \varphi$ for the following:

$$G(s) = \frac{10}{s(s+10)}, \quad H(s) = 1$$

$$\therefore \frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)H(s)}$$
i.e. 
$$T(s) = \frac{\frac{10}{s(s+10)}}{1+\frac{10}{s(s+10)}}$$





Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2<sup>nd</sup> term – Lecture No.15, Bode Plot Method.

$$T(s) = \frac{10}{s^2 + 10s + 10}$$

In the frequency domain, replace s by jω

$$T(j\omega) = \frac{10}{(j\omega)^2 + 10 \ j\omega + 10} = \frac{(10)}{(10 - \omega^2) + j 10 \ \omega}$$

$$T(j\omega) = M \angle \phi \text{ where}$$

$$M = \frac{|10|}{|(10 - \omega^2) + j 10 \ \omega|} = \frac{10}{\sqrt{(10 - \omega^2) + 100 \ \omega^2}}$$
and
$$\phi = -\tan^{-1}\left(\frac{10 \ \omega}{10 - \omega^2}\right)$$

# **Bode Plot**

for Bode plot, magnitude in dB and phase angle in degrees are the magnitudes and phase angles of  $G(j\omega)H(j\omega)$ , plotted against Log  $\omega$ .

So in general Bode plot consists of two plots which are,

- Magnitude expressed in logarithmic values against logarithmic values of frequency called Magnitude Plot.
- 2) Phase angle in degrees against logarithmic values of frequency called Phase Angle Plot.



Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2<sup>nd</sup> term – Lecture No.15, Bode Plot Method.

## **Magnitude Plot**

For Bode Plot

$$|G(j\omega)| = 20 \log_{10} |G(j\omega)| dB.$$

Such decibels values are to be plotted against  $\log_{10}(\omega)$ . So magnitude plot can be shown as in the Fig. 15.1

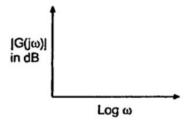


Fig. 15.1 Magnitude plot

## The Phase Angle Plot

The phase angle plot can be shown as in the Fig. 15.2

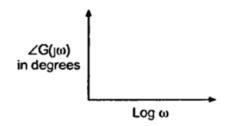
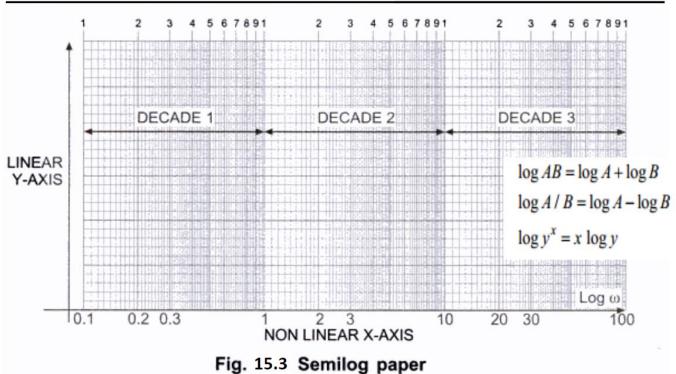


Fig. 15.2 Phase angle plot

# Logarithmic Scales (Semilog Papers)





Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod
2<sup>nd</sup> term – Lecture No.15, Bode Plot Method.

# Standard Form of Open Loop T.F. G(jw)H(jw)

Consider G(s)H(s) = 
$$\frac{K' s^{Z} (s+Z_{1}) (s+Z_{2}) \dots}{s^{P} (s+P_{1}) (s+P_{2}) \dots}$$

The standard time constant form can be denoted as,

G(s)H(s) = 
$$\frac{K(1+T_1 s) (1+T_2 s) .....}{s^P (1+T_a s) (1+T_b s)}$$

K = Resultant system gain P = Type of the system

 $T_1$ ,  $T_2$ ,  $T_a$ ,  $T_b$ ,..... = Time constants of different poles and zeros.

## Frequency domain O.L.T.F.

$$G(j\omega)H(j\omega) = \frac{K(1 + T_1 j\omega) (1 + T_2 j\omega) ....}{(j\omega)^P (1 + T_a j\omega) (1 + T_b j\omega) ....}$$

List of such basic factors is,

- 1) Resultant system gain K, constant factor.
- Poles or zeros at the origin. (Integral and Derivative factors) i.e. (jω)<sup>±p</sup>
- Simple poles and zeros also called first order factors of the form (1 + jωT)<sup>±1</sup>
- 4) Quadratic factors which cannot be factorised into real factors, of the form

$$\left(1 + \frac{2\xi}{\omega_{n}}s + \frac{s^{2}}{\omega_{n}^{2}}\right) \approx 1 + 2\xi j\left(\frac{\omega}{\omega_{n}}\right) + \left(\frac{j\omega}{\omega_{n}}\right)^{2}$$

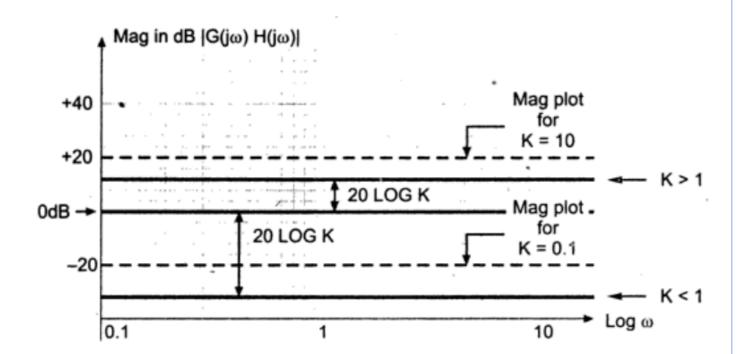


Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod  $2^{nd}$  term – Lecture No.15, Bode Plot Method.

# **Bode Plots of Standard Factors of G(jω)H(jω)**

# Factor 1 : System Gain 'K'

**Key Point:** This means `K' shifts the magnitude plot of  $|G(j\omega)H(j\omega)|$  by a distance of 20 Log K dB upwards if K > 1 and downwards if K < 1.





Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod  $2^{nd}$  term – Lecture No.15, Bode Plot Method.

## Phase Angle Plot:

As 
$$G(j\omega)H(j\omega) = K + j0$$

Corresponding 
$$\phi = \tan^{-1} \frac{\text{imj part}}{\text{real part}} = \tan^{-1} \frac{0}{K} = 0^{\circ}$$

But if `K' is negative, it always contributes - 180° to the phase angle plot independent of frequency.

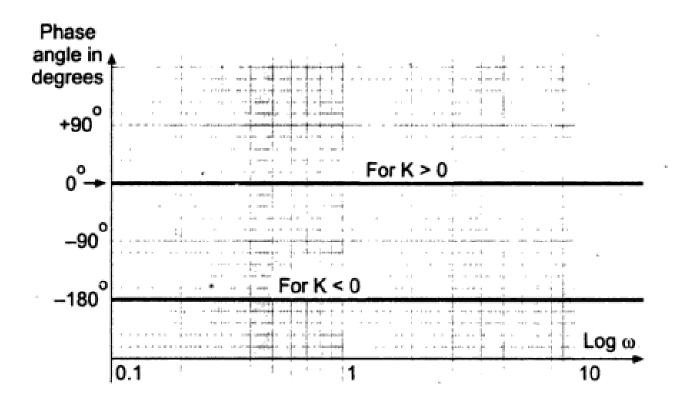


Fig (15.5): phase plot of  $G(j\omega)$  in Bode plot diagram for basics factor K