

Al-Mustaqbal University Collage of Engineering Prosthetics and Orthotics Engineering First Stage

PHYSICS OF MATERIALS Asst. Lec. Muntadher Saleh Mahdi Ist term – Lecture 2

2024-2025

Muntadher.saleh.mahdi@uomus.edu.iq UOMU013024

How can we stack metal atoms to minimize empty space?

Now stack these 2-D layers to make 3-D structures
Unit cell

Crystal structure & Unit Cell

- Seven different possible geometries for the unit cell.
- There are 14 Bravais lattices, with each point representing the
- same atom or collection of atoms.
- Pure metals are usually FCC, BCC or HCP.
- Except for hexagonal, number of atoms per unit cell: 1/8 at corners 1/2 at face centers All of body centered

Metals form tightly packed crystal structures because:

Atoms are equal in size: This helps them fit together efficiently.

Energy is reduced: Atoms are positioned close to reduce bond energy.

Electron clouds shield atoms: This prevents repulsion between atomic cores.

Metals have the simplest crystal structures.

Body-Centered Cubic (BCC)

Found in metals like iron, chromium, and tungsten. Atoms are less densely packed than FCC, with coordination numbers of 8 and an APF of 0.68.

2 atoms/unit cell: 1 center + 8 corners x 1/8

Face-Centered Cubic (FCC)

Found in metals like copper, aluminum, and silver. Atoms are densely packed, resulting in high coordination numbers (12) and efficient atomic packing (APF: 0.74).

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

Face-Centered Cubic (FCC)

Computation of the Atomic Packing Factor for FCC

Show that the atomic packing factor for the FCC crystal structure is 0.74.

Solution

The APF is defined as the fraction of solid sphere volume in a unit cell, or

$$APF = \frac{\text{volume of atoms in a unit cell}}{\text{total unit cell volume}} = \frac{V_S}{V_C}$$

Both the total atom and unit cell volumes may be calculated in terms of the atomic radius *R*. The volume for a sphere is $\frac{4}{3}\pi R^3$, and because there are four atoms per FCC unit cell, the total FCC atom (or sphere) volume is

$$V_S = (4)^4_3 \pi R^3 = \frac{16}{3} \pi R^3$$

From Example Problem 3.1, the total unit cell volume is

$$V_C = 16R^3\sqrt{2}$$

Therefore, the atomic packing factor is

APF =
$$\frac{V_S}{V_C} = \frac{\left(\frac{16}{3}\right)\pi R^3}{16R^3\sqrt{2}} = 0.74$$

Hexagonal Close-Packed (HCP)

Found in metals like zinc and magnesium. Similar efficiency to FCC with APF: 0.74, and a unique hexagonal structure.

6 atoms/unit cell

Metal	Crystal Structure ^a	Atomic Radius ^b (nm)	Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FCC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCP	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (α)	HCP	0.1445
Iron (α)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.1750	Zinc	HCP	0.1332

Table. 1 : Atomic Radii and Crystal Structures for 16 Metals.

Density Calculation

A knowledge of the crystal structure of a metallic solid permits computation of its theoretical density through the relationship

 $\rho = \frac{nA}{V_C N_A}$

where

n = number of atoms associated with each unit cell A = atomic weight VC = volume of the unit cell NA = Avogadro>s number (6.022 * 10²³ atoms/mol)

Density Calculation

Theoretical Density Computation for Copper

Copper has an atomic radius of 0.128 nm, an FCC crystal structure, and an atomic weight of 63.5 g/mol. Compute its theoretical density, and compare the answer with its measured density.

Solution

Equation 3.8 is employed in the solution of this problem. Because the crystal structure is FCC, *n*, the number of atoms per unit cell, is 4. Furthermore, the atomic weight A_{Cu} is given as 63.5 g/mol. The unit cell volume V_C for FCC was determined in Example Problem 3.1 as $16R^3\sqrt{2}$, where *R*, the atomic radius, is 0.128 nm.

Substitution for the various parameters into Equation 3.8 yields

$$p = \frac{nA_{Cu}}{V_C N_A} = \frac{nA_{Cu}}{(16R^3\sqrt{2})N_A}$$

=
$$\frac{(4 \text{ atoms/unit cell})(63.5 \text{ g/mol})}{[16\sqrt{2}(1.28 \times 10^{-8} \text{ cm})^3/\text{unit cell}](6.022 \times 10^{23} \text{ atoms/mol})}$$

= 8.89 g/cm³

The literature value for the density of copper is 8.94 g/cm³, which is in very close agreement with the foregoing result.

