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1 Divisibility and Prime Numbers

1.1 Divisibility
Important Definition

Definition 1.1 (Divides). For integers a and b, we say that a divides b (denoted a | b) if

there exists an integer k such that:

b = a · k.

For example:

3 | 15 since 15 = 3× 5.

Remark 1.1. If a does not divide a, we write a ∤ b.

Properties of Divisibility

For integers a, b, c:

• If a | b and b | c, then a | c (Transitivity).

• If a | b and a | c, then a | (b+ c) and a | (b− c).

• If a | b, then a | kb for any integer k.

Theorem 1.1. For integers a, b, c, the following hold:

1. a | 0, 1 | a, a | a.

2. a | 1 if and only if a = ±1.

3. If a | b and c | d, then ac | bd.

4. a | b and b | a if and only if a = ±b.

5. If a | b and b ̸= 0, then |a| ≤ |b|.

6. If a | b and a | c, then a | (bx+ cy) for arbitrary integers x and y.
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Division Algorithm

Theorem 1.2. Let a, b be integers with a ̸= 0. Then there exist unique integers q and r

such that:

b = aq + r, 0 ≤ r < |a|.

where q is called the quotient, and r is called the remainder.

Remark 1.2. Divisibility Condition: a | b ⇐⇒ r = 0

Theorem 1.3. For any integer a ̸= 0 and any integer b, there exist unique integers q (quotient)

and r (remainder) such that:

b = aq + r, where 0 ≤ r < |a|. (1)

Proof. Let (q1, r1), (q2, r2) ∈ Z, such that

b = aq1 + r1, where 0 ≤ r1 < |a|, (2)

b = aq2 + r2, where 0 ≤ r2 < |a|, (3)

From (2) and (3) b = aq1 + r1 = aq2 + r2 ⇒ aq1 − aq2 = r2 − r1.

a(q1 − q2) = r2 − r1. (4)

Since −|a| < −r1 ≤ 0, 0 ≤ r2 < |a|, then

−|a| < r2 − r1 < |a|. (5)

But from (4) r2 − r1 = a(q1 − q2) ⇒ r2 − r1 = 0 ⇒ r2 = r1

Since a ̸= 0, we must have q1 − q2 = 0 ⇒ q1 = q2.
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Example 1.1. Prove that

1. 4 | 20

2. 5 ∤ 23

3. Every even integer n is divisible by 2

4. Every odd integer n is not divisible by 2 H.W

Sol. 1. By Division Algorithm, there exists integers q, r such that:

20 = 4q + r.

We check:

20 = 4× 5.

Since q = 5, and r = 0, then

4 | 20.

2. By Division Algorithm, there exists integers q, r such that:

23 = 5q + r.

We check:

23 = 5× 4 + 3.

Since q = 5, and r = 3, then

5 ∤ 23.

3. By Division Algorithm, there exists integers q, r such that:

n = 2q + r.
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The only possible values for r are:

r = 0 or r = 1.

Case 1: If r = 0

Then

n = 2q ⇒ 2 | n.

Case 1: If r = 1

Then

n = 2q + 1 ⇒ n is odd integer C!

∴ 2 | n

1.2 Prime Numbers
Prime Number

Definition 1.2. A prime number is an integer p > 1 that has exactly two distinct positive

divisors: 1 and itself.

Formally, p is prime if:

p > 1 and ∀d | p, d = 1, or d = p.

Examples: 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

Definition 1.3. A composite number is an integer greater than 1 that is not prime, meaning it

has at least one divisor other than 1 and itself.

Examples: 4, 6, 8, 9, 10, 12, 14, 15, . . .
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Lemma 1.1. If n is composite, then there exist integers a and b, such that:

n = ab, 1 < a < n, 1 < b < n.

Prime Numbers

2, 3, 5,

7, 11,

13, 17,

19, 23,

29, 31,

37, 41,

43, 47,

53, 59,

61, 67,

71, 73,

79, 83,

89, 97,

101,

103,

107,

109,

113,

127,

131,

137,

139,

149,

151,

157,

163,

167,

173,

179,

181,

191,

193,

197,

199,

211,

223,

227,

229,

233,

239,

241,

251,

257,

263,

269,

271,

277,

281,

283,

293,

307,

311,

313,

317,

331,

337,

347,

349,

353,

359,

367,

373,

379,

383,

389,

397,

401,

409,

419,

421,

431,

433,

439,

443,

449,

457,

461,

463,

467,

479,

487,

491,

499,

503,

509,

521,

523,

541,

547,

557,

563,

569,

571,

577,

587,

593,

599,

601,

607,

613,

617,

619,

631,

641,

643,

647,

653,

659,

661,

673,

677,

683,

691,

701,

709,

719,

727,

733,

739,

743,

751,

757,

761,

769,

773,

787,

797,

809,

811,

821,

823,

827,

829,

839,

853,

857,

859,

863,

877,

881,

883,

887,

907,

911,

919,

929,

937,

941,

947,

953,

967,

971,

977,

983,

991,

997,

1009,

1013,

1019,

1021,

1031,

1033,

1039,

1049,

1051,

1061,

1063,

1069,

1087,

1091,

1093,

1097,

1103,

1109,

1117,

1123,

1129,

1151,

1153,

1163,

1171,

1181,

1187,

1193,

1201,

1213,

1217,

1223,

1229,

1231,

1237,

1249,

1259,

1277,

1279,

1283,

1289,

1291,

1297,

1301,

1303,

1307,

1319,

1321,

1327,

1361,

1367,

1373,

1381,

1399,

1409,

1423,

1427,

1429,

1433,

1439,

1447,

1451,

1453,

1459,

1471
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1.3 Exercises of Divisibility and Prime Numbers

Exercises

1. Prove that if x is even, then x2 + 2x+ 4 is divisible by 4.

2. Suppose a | b and a | c. Prove the following:

(a) a | b+ c.

(b) a | b− c.

(c) a | mb for all m ∈ Z.

3. Prove that if a | b and b | a, then a = b or a = −b.

4. Show that 5 | 25,−19 | 38,−5 ∤ 27 and 2 | 98.

5. List all prime numbers less than 30 and briefly justify why each is prime.

6. Find the prime factorization of 84.
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