وزارة التعليم العالى والبحث العلمي جامعة المستقبل كلية الهندسة والتقنيات الهندسية قسم تقنيات الهندسة الكهربائية



# **Central Processing Unit (CPU)**

#### & Memory

Assist. Lec. Ruqayah Ahmed Mutar

rugaya.ahmed@uomus.edu.iq

#### What is the CPU?

The Central Processing Unit (CPU) is often referred to as the "**brain of the computer**". It carries out the instructions of a computer program by performing basic arithmetic, logical, control, and input/output operations. The CPU is responsible for:

- Fetching instructions from memory
- Decoding them
- Executing commands

This process is known as the fetch-decode-execute cycle.

#### What is the CPU?



### **Main Functions of the CPU**

The CPU performs four primary operations:

- Fetch Collect instructions from the memory.
- Decode Interpret the instructions.
- Execute Carry out the instruction.
- Store Write back the result to memory if necessary.

The CPU consists of three key parts:

- **a.** Arithmetic Logic Unit (ALU)
- b. Control Unit (CU)
- C. Registers

- **a.** Arithmetic Logic Unit (ALU)
- Performs mathematical operations: addition, subtraction, multiplication, division.
- Performs logical operations: AND, OR, NOT, comparisons (greater than, less than).

**b.** Control Unit (CU)

- Directs the flow of data between the CPU and other devices.
- Tells the ALU, memory, and input/output devices how to respond to instructions.

c. Registers

- Small, fast memory units inside the CPU.
- Temporarily hold data and instructions currently being processed.
- Common registers: Accumulator, Program Counter, Instruction Register.

#### **CPU Clock and Speed**

- The CPU clock determines how many instructions the CPU can process per second.
- Clock speed is measured in gigahertz (GHz).

1 GHz = 1 billion cycles per second.

• A higher clock speed usually means a faster processor, but efficiency also depends on architecture.

#### **Cores and Multicore Processors**

- **Single-core processor**: One processing unit.
- **Multi-core processor**: Two or more processing units (cores) on a single chip.
- Common core configurations: Dual-core, Quad-core, Hexacore, Octa-core.

More cores mean better multitasking and performance for modern applications.

### **Types of CPUs**

#### **a. CISC** (**Complex Instruction Set Computer**) More complex instructions. Examples: Intel x86 processors.

#### **a. RISC (Reduced Instruction Set Computer)** Simpler, faster instructions. Examples: ARM processors (used in smartphones).

## **Cache Memory**

- 1. Small, high-speed memory located inside or very close to the CPU.
- 2. Stores frequently used data and instructions to reduce access time.
- Levels:L1 Cache: Closest to the core, fastest but smallest.
- L2 Cache: Slightly slower but larger.
- L3 Cache: Shared among cores, larger but slower than L1/L2.

#### **Factors Affecting CPU Performance**

- CPUs connect to the motherboard via a CPU socket.
- Different CPUs require compatible sockets

(e.g., LGA 1200 for Intel, AM5 for AMD).

• Important to match CPU with motherboard type.

#### **Common CPU Manufacturers**

- Intel Known for Core i3, i5, i7, i9 series.
- AMD Known for Ryzen and EPYC series.
- Apple M1, M2 chips (based on ARM architecture).
- **Qualcomm** Snapdragon processors for mobile devices.

## **Computer Memory**

Memory is one of the core components of a computer system. It stores data and instructions that the CPU needs to execute tasks.

Without memory, a computer would not be able to store data temporarily or permanently.

This lecture will explore the types, hierarchy, and functions of computer memory.

### **Definition of Memory**

Computer memory refers to the physical devices used to store data or programs.

### **Definition of Memory**



## **Importance of Memory**

- Enables fast access to data for the CPU.
- Stores both instructions and data during processing.
- Affects the overall performance of the system.
- Provides both volatile and non-volatile storage options.

### **Types of Computer Memory**

• A. Primary Memory (Main Memory)

• B. Secondary Memory (Storage Devices)

### A. Primary Memory (Main Memory)

Primary memory is directly accessible by the CPU. It is usually volatile, meaning it loses its data when the power is turned off.

- RAM (Random Access Memory)
- ROM (Read Only Memory)

### A. Primary Memory (Main Memory)

Primary memory is directly accessible by the CPU. It is usually volatile, meaning it loses its data when the power is turned off.

- RAM (Random Access Memory)
- ROM (Read Only Memory)

### **RAM (Random Access Memory)**

Temporary memory that stores data and instructions currently in use.

Volatile in nature.

Two main types:

- **DRAM** (Dynamic RAM) needs to be refreshed continuously.
- **SRAM** (Static RAM) faster and more expensive, doesn't need refreshing.

### **ROM (Read Only Memory)**

Permanent memory that stores critical data needed to boot up the computer (BIOS).

Non-volatile in nature.

Types include:

- PROM (Programmable ROM)
- EPROM (Erasable Programmable ROM)
- EEPROM (Electrically Erasable Programmable ROM)

#### **Secondary Memory (Storage Devices)**

Although this is often classified separately from memory, it's essential in the memory hierarchy.

- Non-volatile and used for permanent storage.
- Examples include Hard Disk Drives (HDD), Solid State Drives (SSD), USB flash drives, CDs, DVDs.



# THANKS

