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Vector addition and subtraction

Vectors can be added and subtracted. Graphically, we can think of adding two vectors together as
placing two line segments end-to-end, maintaining distance and direction. An example of this is shown in

- - -

the illustration, showing the addition of two vectors @ and D to create a third veetor €.
- - -
a+b=c

Numerically, we add vectors component-by-component. That is to say, we add the X components
together, and then separately we add the ¥ components together. For example, if @ = [4,3] and b = [1,2],
then:

< i
ath

n
1

[4.3] + [1.2

c

f=[4+1,3+2)

¢ =[5,5]

Similarly, in vector subtraction:
= d-b
¢=[43]-[12]
¢ =[3,]

Vector addition has a very simple interpretation in the case of things like displacement. 1T in
the morning a ship sailed 4 miles east and 3 miles north, and then in the alternoon it sailed a further
| mile east and 2 miles north, what was the total displacement for the whole day? 5 miles east and 5

miles north — vector addition at work.
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Linear independence

If twor vectors point in different directions, even if they are not very different directions, then the
two vectors are said 1o be linearly independent. 1T vectors d and b point in the same direction, then you
can multiply vector a by a constant, scalar value and get vector |'.; and vice versa to get from btod. Ifthe
two vectors point in different directions, then this 15 not possible to make one out of the other because
multiplving a vector by a scalar will never change the direction of the vector, it will only change the
magnitude. This concept generalizes to families of more than two vectors.  Three vectors are sad 1o be

lingarly independent if there 18 no way to construct one vector by combining scaled versions of the other
two. The same defimition applies o families of four or more vectors by applying the same rules.

The vectors in the previous figure provide a graphical example of linear independence. Vectors a
and E]Juinl in slightly different directions. There 15 no way to change the length of vector d and generate
veelor €, nor vice-versa to get from € o @. If, on the other hand, we consider the farmly of vectors that
contains a, 1; and €, it is now possible, as shown, to add vectors a and 1; to generate vector €. So the

family of vectors a, E:.'md € is mot linearly independent, but s instead said w be lincarly dependent.
[ncidentally, you could change the length of any or all of these three vectors and they would stll be

linearly dependent.

Definition: A family of vectors 18 linearly independent 1f no one of the vectors can be created by any
lingar combination of the other vectors in the family. For example, 1% lingarly independent of d and .‘JI

if and only if it is impossible to find scalar values of ¢ and B such that ¢ = od + ﬁ.‘}
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Yector multiplication: dot products

Mext we move mto the world of vector multiplication. There are two principal ways of
multiplying vectors, called dof products (ak a. scalar products) and cross products. The dot product:

d=ii-b

generates o scalar value from the product of two vectors and will be discussed in greater detail below. Do
not confuse the dot product with the cross product:

F=dxh
which i an entirely different beast. The cross product generates a vector from the product of two vectors.
Cross products so up in physics sometimes, such as when describing the mteraction between electrical

and magnetic felds (ask your local IMRI expert), but we'll set those aside for now and just focus on dot

products in this course. The dot product 15 caleulated by multiplying the X components, then separately
multiplying the ¥ components {and so on for Z, ete._. for products in more than 2 dimensions) and then

adding these products together. To do an example using the vectors above:

b= [43]-[12]

=T

b= (4+1)+(3 +2)

(=N}

4
a-6=11

Another way of caleulating the dot product of two vectors 15 to use a geometric means. The dot product

can be expressed geometrically as:

-8 = ][5 cost

where 8 represents the angle between the two vectors. Believe it or not, caleulation of the dot product by
either procedure will yield exactly the same result.  Recall, again from high school geometry, that
€050° = 1 and that c0s90° = 0. I the angle between @ and b is nearly 07 {i.e. if the vectors point in

nearly the same direction), then the dot product of the two vectors will be nearly ||r1'||||z||

Definition: A dot product {or scalar product) is the numencal product of the lengths of two vectors,

multiplied by the cosine of the angle between them.
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Orthogonality

As the angle between the two vectors opens up to approach 907, the dot product of the two
vectors will approach 0, regardless of the vector magnitudes ll@ll and ||B]|. In the special case that the

angle between the two vectors is exactly #0°, the dot product of the two vectors will be 0 regardless of the

miagnitude of the vectors. In this case, the two vectors are said to be orthogonal.

Definition: Two vectors are orthogonal to one another if the dot product of those two vectors 15 equal to
Zero.

Orthogonality is an important and general concept, and is a more mathematically precise way of
saying “perpendicular.” In two- or three-dimensional space, orthogonality is identical to perpendiculanty
and the two ideas can be thought of interchangeably. Whereas perpendicularity is restricted to spatial
representations of things, orthogonality is a more general term. In the context of neural networks,
neuroscientists will often talk in terms of two patterns of neuronal finng being orthogonal to one another.
Orthogonality can also apply to functions as well as to things like vectors and firing rates. As we will
discuss later in this class in the context of fourier fransforms, the sin and cos functions can be sad to be
orthogonal functions. [n any of these contexts, orthogonality will alwavs mean something akin to “totally
independent™ and is specifically refering to two things having a dot product of zero.

s
Rate #2

Vector spaces

All vectors live within a vecror space. A vector space is
exactly what it sounds like — the space in which vectors live. When
talking about spatial vectors, for instance the direction and speed

with which a person is walking through a room, the vector space is
intuitively spatial since all available directions of motion can be Ravtee &1

plotted directly onto a spatial map of the room.

A less spatially intuitive example of a vector space A
might be all available states of a neural network. Imagine a very Rate 02
simple network, consisting of only five neurons which we will
call my, 3, My, T4, and Mg At each point in time, each neuron

might not fire any action potentials at all, in which case we
write 71, = 0, where ¢ denotes the neuron number. Alternatively,

the neuron might be firing action potentials at a rate of up to
100 Hz, in which case we write that 7, = x, where 0= x = [00 Rate X1

The state of this network at any moment in time can be

depicted by a vector that describes the finng rates of all five

y 5
MEUTons: ake 3
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The set of all possible firing rates for all five neurons represents a vector space that is every bit as
real as the vector space represented by a person walking through a room. The vector space represented by
the neurons, however, is 8 5-dimensional vector space. The math is identical to the two dimensional
situation, but in this case we must trust the math because our graphical intuition fails us.

If we call state 1 the state in which neuron #1 is firing at a rate of 1 Hz and all others are silent,
we can write this as:

5, = [1,0,0,0,0]

We may further define states 2, 3, 4, and 5 as follows:

s, = [0,1,0,0,0]
53 = [0,0,1,0,0]
54 = [0,0,0,1,0]
55 = [0,0,0,0,1]

By taking combinations of these five basis vectors, and multiplying them by scalar constants, we
can describe any state of the network in the entire vector space. For example, to generate the network
state [0, 3, 0,9, 0] we could write:

(3x5,)4 (925,)=[0,3,09,0]

If any one of the basis vectors 1s removed from the set, however, there will be some states of the
network we will be unable to describe. For example, no combination of the vectors 5y, 5z, 53, and 54 can

describe the network state [1, 0, 5, 3, 2| without also making use of 55, Every vector space has a set of

basis vectors. The definition of a set of basis vectors 15 twofold: (1) linear combinations (meaning
addition, subtraction and multiplication by scalars) of the basis vectors can describe any vector in the
vector space, and (2) every one of the basis vectors must be required in order to be able to describe all of
the vectors in the vector space. It 15 also worth noting that the vectors 5y, 53, 53, 54, and 55 are all

orthogonal to one another. You can test this for vourself by calculating the dot product of any two of
these five basis vectors and verifying that it 1s zero. Basis vectors are not always orthogonal to one
another, but they must always be linearly independent. The vector space that is defined by the set of all
vectors you can possibly generate with different combinations of the basis vectors is called the span of the
basis vectors.
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