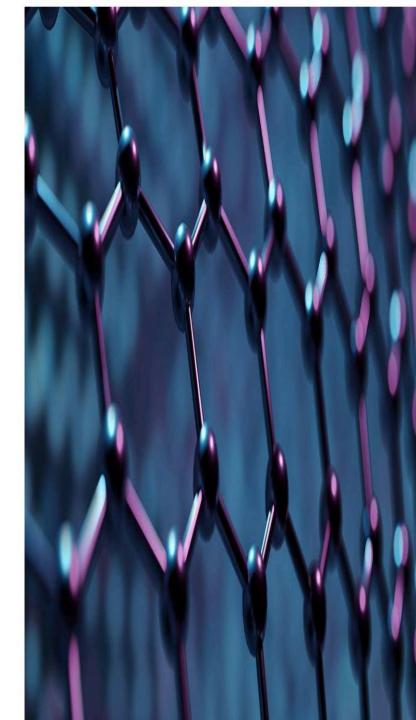


Physics of atom

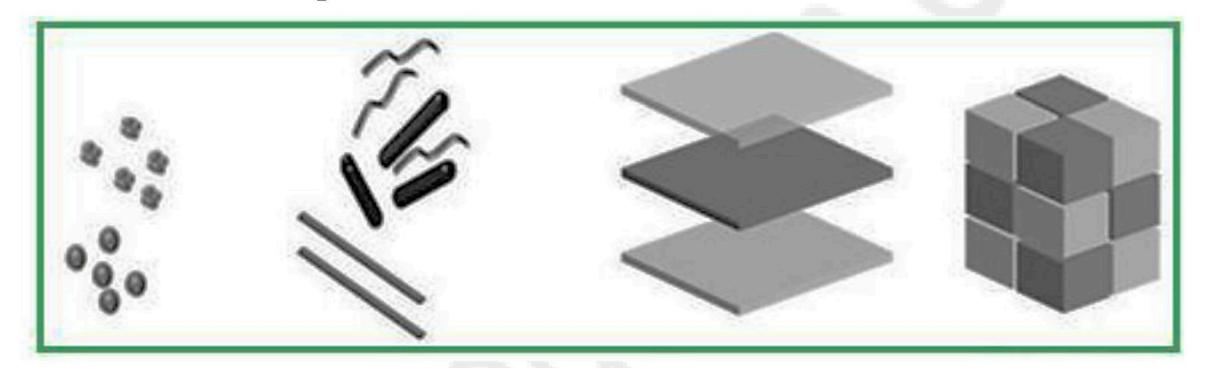


Lecture Four / Theoretical

Introduction of Nanomaterials

First stage

Dr. Ahmed Najm Obaid 2025

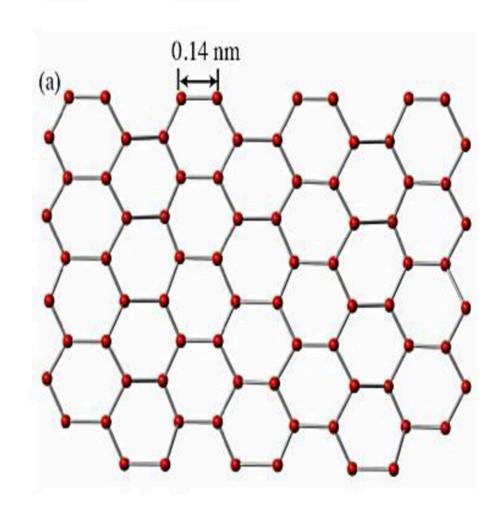

Introduction to Nanomaterials

Nanomaterials, defined as materials with at least one dimension (x, y, z) in the nanoscale range (1-100 nm), One nanometer is one billionth (10^{-9}nm) of a metre.

Nanomaterials are categorized based on their dimensions:

- 1. Zero-dimensional (0D): Here, all dimensions (x, y, z) are at nanoscale, i.e., no dimensions are greater than 100 nm. It includes nanospheres and nanoclusters.
- 2. One-dimensional (1D): Here, two dimensions (x, y) are at nanoscale and the other is outside the nanoscale. It includes nanofibres, nanotubes, nanorods, and nanowires.
- **Two-dimensional (2D):** Here, one dimension (x) is at nanoscale and the other two are outside the nanoscale. The 2D nanomaterials exhibit platelike shapes. It includes nanofilms, nanolayers and nanocoatings with nanometre thickness.

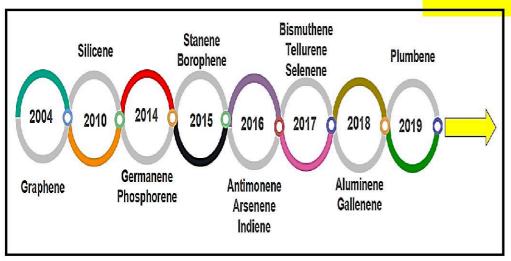
4. Three-dimensional (3D): Bulk nanostructured materials, such as nanoporous solids or nanocomposites.

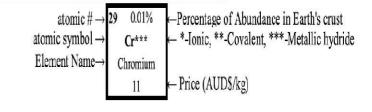


Synthesis and Characterization

- 1. Top-down approaches: (e.g., ball milling)
- 2. Bottom-up approaches: (e.g., chemical vapor deposition (CVD)).

Graphene (GR)


Fifteen years after the Nobel Prize in Physics was awarded and twenty-one years after the first report on Graphene, global interest in this "wonder material" is still growing. It is a twodimensional (2D) allotropic form of carbon with a hexagonal lattice (honeycomb pattern) structure formed by a single layer of bound carbon atoms with a one-atom thickness of **0.35** nm and distinct chemical, mechanical, electrical, and thermal properties. These properties make it a versatile platform for innovative medical applications, ranging from diagnostics to therapeutics.



Abundance

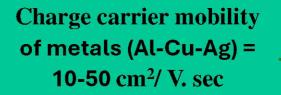
Abundance (%):

0.00%

50.00% High

10

11


9

			_				III B	IV B V B	VI B VII B	VIII B VII	II B VIII B	IB
Draft							13 III A	14 IV A	15 V A	16 VI A	17 VII A	2 0.00% He Heer
					2p	5 0.09% B** Boron 3	6 0.18% C** Carbon	7 0.20% N** Nitrogen 3	8 45.68% O** Oxygen	9 0.05% F** Fluorine	10 0.00% Ne Neon	
	8 VIII B	9 VIII B	10 VIII B	11 I B	12 II B	3р	13 8.14% Al** Aluminium 2	Si** Silicon 4	15 0.10% P** Phosphorus 0.17	16 0.04% S** Sulfur 11	17 0.02% Cl** Chlorine	18 0.01% Ar Argon
26	6.26% Fe Iron 0.40	27 0.30% Co Cobalt 22	28 0.89% Ni Nickel 23	29 0.68% Cu Copper 8	30 0.78% Zn Zinc 3	4р	31 0.19% Ga** Gallium	32 0.01% Ge** Germanium 2,356	33 0.02% As** Arsenic	34 0.00% Se** Selenium	35 0.03% Br** Bromine	36 0.00% Kr Krypton
44	9.93E-08% Ru Ruthenium 6,817	45 6.95E-08% Rh Rhodium 101,000	46 6.26E-07% Pd*** Palladium 20,000	Ag Silver 708	48 1.49E-05% Cd Cadmium 5	5р	49 0.00% In Indium 550	50 0.02% Sn** Tin 21	51 0.00% Sb** Antimony	52 0.00% Te** Tellurium	53 0.00% I** Iodine	54 0.00% Xe Xenon
76	1.79E-07% Os osmium	77 3.97E-08% Ir iridium 23,000	78 3.67E-06% Pt platinum 51,000	79 3.08E-07% Au gold 42,000	80 6.65E-06% Hg mercury	6р	81 0.01% Tl thallium	82 0.10% Pb** Lead	83 0.00% Bi** bismuth 22	84 0.00% Po** polonium	85 0.00% At** astatine	86 0.00% Rn radon

Graphene

Table 1	Mechanical properties comparison						
Material	Modulus (Gpa)	T.S. (GPa)	Density (g/cm ³)	Diameter			
SWCNT/MWCNT	~ 1,000	~ 100-200	~0.7-1.7	~1/20 nm			
Carbon nanofibers	~ 500	3-7	1.8-2.1	20-200 nm			
Graphene	~ 1,000	~ 100-400	~1.8-2.2	Platelet			
Glass Fiber	22	3.4	2.6	5-10			
High Tensile Steel	210	1.3	7.8	1 7-17-			
Carbon Fiber	230	3.5	1.75	5-10			
Aramid Fiber	60	3.6	1.44	5-10			

Table 2	Mechanical properties comparison						
Material	Modulus (Gpa)	T.S. (GPa)	Density (g/cm³)	Diameter			
SWCNT/MWCNT	~ 1,000	~ 100-200	~0.7-1.7	~1/20 nm			
Carbon nanofibers	~ 500	3-7	1.8-2.1	20-200 nm			
Graphene	~ 1,000	~ 100-400	~1.8-2.2	Platelet			
Glass Fiber	22	3.4	2.6	5-10			
High Tensile Steel	210	1.3	7.8	.==			
Carbon Fiber	230	3.5	1.75	5-10			
Aramid Fiber	60	3.6	1.44	5-10			

Thermal conductivity of Cu and diamond = 400 and 2000 W / m.K

Table 3	Physical properties
Charge carrier mobility	~200,000 cm²/ V. sec
Thermal conductivity	~ 5000 W / m.K
Transparency	~ 97.4 %
Specific surface area	~ 2630 m ² / g