Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

1stterm – Lect No. & Lect Name (#6 Non-Algebraic Functions Derivatives.: Exponential, Hyperbolic and Inverse Hyperbolic Functions Derivatives)

Derivatiles of Exponential Punetius de (a) = a la vu , a = constant

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

1stterm – Lect No. & Lect Name (#6 Non-Algebraic Functions Derivatives.: Exponential, Hyperbolic and Inverse Hyperbolic Functions Derivatives)

2) show that of ex = ex? By using the derivative by definition lef $S(x) = e^{x} = 0$ $F(x+\alpha x) = e^{x+\alpha x} = e^{x+\alpha x}$ dr - lim FCX+AN-FCXI
AX substitute of @ into 6, yields, df = lim e.e. - e = lim ex(ex-1)

ak+0 AK one of the definition of "e" is - dr = d & = e cs Scanned with CamScanner

AL CONTROL OF THE PARTY OF THE

Al-Mustaqbal University / College of Engineering & Technology Department (Fuel & Energy)

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

AL AND THE PROPERTY OF THE PRO

Al-Mustaqbal University / College of Engineering & Technology Department (Fuel & Energy)

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

5) Derivatives of Hyperbolic Finds	~ 2~
5) Derivativos of Hyperbolic Finds	
- dx sahu = coshu *u'	
2-dr coshu = sinhu xu'	
3-dr tanhu = seeh u + u'	
+-dx seeku =- seeku tanhu «u'	r
5-d coseehu = - Coseehu Cothuxu	Ĺ
6 dx coth u = - cosoch u x u'	
	•
CS Considerate Considerate	
Scarined with Carriscariner	

A Company of the Comp

Al-Mustaqbal University / College of Engineering & Technology Department (Fuel & Energy)

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

Examples -	
1 Find the derivative of	
y=4 sinh 2x - 3 Cosh 3x	
Solution	
$\frac{dy}{dx} = y' = 4(\cosh 2x + 2) - \frac{3}{7}(\sinh 3x + 3)$	
$= \left[8 \cosh 2x - \frac{9}{7} \sinh 3x \right] \frac{9}{7}$	
② Denive $y=5 \tanh \frac{x}{2} - 2$ Goth 4x solution	
Solution	
dy =y'= 5 (seeh 2 x 1) -2 (- cosed 4)	K *4)
$= \left[\frac{5}{2} \operatorname{seeh}^{2} \frac{\chi}{2} + 8 \operatorname{Coseeh}^{2} 4\chi\right] n$	*********************
3) show that of sinhx = coonx	
solution	
From past course sinhx = ex-ex 2	
$\frac{d}{dx} = \frac{1}{2} \left(e^{-\frac{1}{2} \cdot e^{-\frac{1}{2}}} \right) = \frac{e^{-\frac{1}{2}}}{2}$ $= \left(e^{-\frac{1}{2} \cdot e^{-\frac{1}{2}}} \right) = \frac{e^{-\frac{1}{2}}}{2}$	
= Coshx Ans	
CS Scanned with Cambranner 1965	

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

1stterm – Lect No. & Lect Name (#6 Non-Algebraic Functions Derivatives.: Exponential, Hyperbolic and Inverse Hyperbolic Functions Derivatives)

the Previous Course 1084X = 2x + 2x = of cosh x = 1 (e+ex(-1)) on that of tomb K= sech 2

AL AND THE PROPERTY OF THE PRO

Al-Mustaqbal University / College of Engineering & Technology Department (Fuel & Energy)

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

@ Differentiate f(x) = 2x5 coshx Loombry	
مي تفق مي داليق	
$\frac{dF}{dx} = g(x) = 2x^5 \sinh x + \cosh x + 10x^4$	
= 2 x5 sinhx + 10 x4 coshx })ng
Denie h(t) = sinht	
(7) Denie h(t) = sinht Solution t+1	
$\frac{dh}{dt} = h(t) = \frac{(t+1)\cosh t - \sinh t}{(t+1)^2}$	E

Scanned with CamScanner	

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

1stterm – Lect No. & Lect Name (#6 Non-Algebraic Functions Derivatives.: Exponential, Hyperbolic and Inverse Hyperbolic Functions Derivatives)

anned with CamScanner

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

Examples to D find the derivative of y=sinhily	k)
solution	
$\frac{dy}{dx} = y' = \frac{4}{\sqrt{(4x)^2 + 1}} = \frac{4}{\sqrt{16x^2 + 1}} = \frac{9nx}{\sqrt{16x^2 + 1}}$	
3 Derive y= coshi(x3)	
$\frac{dy}{dx} = y' = \frac{3k^2}{\sqrt{(x^3)^2 - 1}} = \frac{3k^2}{\sqrt{x^6 - 1}} = \frac{3k^2}{\sqrt{x^6 - 1}}$	
3) Derive y=tmh(VX) (Solution)	
$\frac{dy}{dx} = y' = \frac{2\sqrt{x}}{1 - (\sqrt{x})^2} = \frac{1}{1 - x}$ $\frac{1}{2\sqrt{x}(1-x)}$	Pie I

AL AND THE PROPERTY OF THE PRO

Al-Mustaqbal University / College of Engineering & Technology Department (Fuel & Energy)

Class (1st)

Subject (Mathematics2) / Code (UOMU027024)

Lecturer (Dr. Hussein K. Halwas)

@ Derive y= (cosech(x))	
- Solution,	************

dy = y' = 3 (Coseeh (x)) + -1 x (1+x2)	
$= \frac{-3(\cos e c h'(x))^2}{ x \sqrt{1+x^2}} = \frac{2ns}{1}$	
5) Derive y=6x sinh (3x)-2 /1+9x2	
(Solution)	
dy = y' = ox * 3 + sinh (3x) * 6 - [2*]	
$\frac{9 \times 2 \times 7}{\sqrt{1 + 9 \times 2}}$	
,	
$= \frac{18x}{\sqrt{9x^2+1}} + 6 = \frac{19x}{\sqrt{1+9x^2}}$	
$V_{0}\chi^{2}+1$ $V_{0}^{2}+9\chi^{2}$	
= 6 sinh (3x) pms	
CS Scanned with CamScanner	
Coamino With Cambodinio	