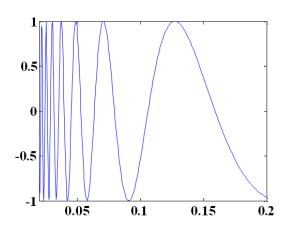


Class (second stage)

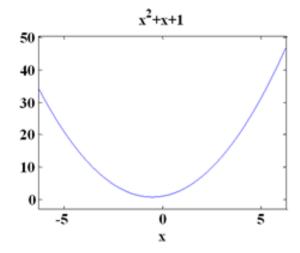
Subject (Computer Programming) Lecturer (Abrar Falah Naji)


2nd term – Lecture No. & Lecture Name (2-D part2)

8. Specialized 2-D plotting functions

MATLAB includes a variety of specialized plotting in addition to the ones described above. The following below briefly describes some of the other plotting functions available in MATLAB.

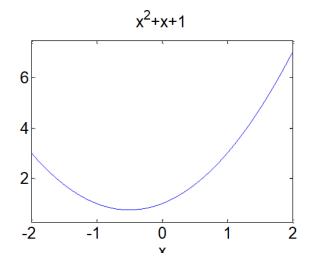
fplot: evaluates a function and plots the results Example:


fplot($\sin(1/x)$, [0.02 0.2]);

ezplot: simplest way to graph a function (easy plot).

Example: to graph the function $y=x^2+x+1$, you write:

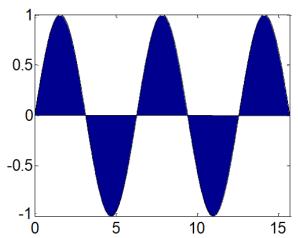
ezplot('x^2+x+1')


Class (second stage)

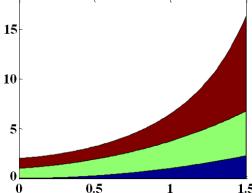
Subject (Computer Programming)
Lecturer (Abrar Falah Naji)

2nd term – Lecture No. & Lecture Name (2-D part2)

If you want to sketch the same function in between -2 and 2 you simply write:


ezplot('x^2+x+1', [-2, 2])

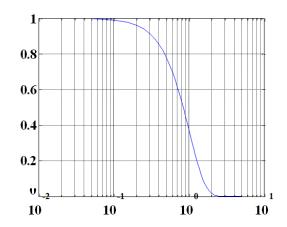
area Filled area plot.


area(X,Y) produces a stacked area plot suitable for showing the contributions of various components to a whole. For vector X and Y, area(X,Y) is the same as plot(X,Y) except that the area between 0 and Y is filled.

<u>Example:</u> t = 0:.01:5*pi; area(t,sin(t))

Example:

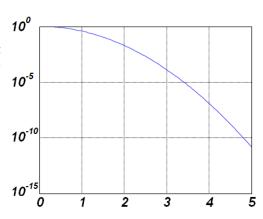
x = 0:0.01:1.5; $area(x,[(x.^2)',(exp(x))',(exp(x.^2))'])$


Class (second stage)

Subject (Computer Programming)
Lecturer (Abrar Falah Naji)

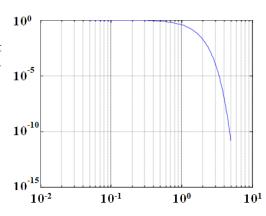
2nd term – Lecture No. & Lecture Name (2-D part2)

semilogx: log-scaled x axis **semilogx** is the same as **plot**, except a logarithmic (base 10) scale is used for the X-axis.


Example: x=0:0.05:5; y=exp(-x.^2); semilogx(x,y); grid

semilogy: log-scaled y axis semilogy is the same as plot, except a logarithmic (base 10) scale is used for the Y-axis.

Example:


x=0:0.05:5; y=exp(-x.^2); semilogy(x,y); grid

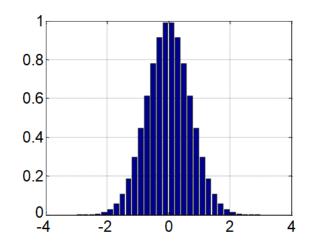
Loglog: Log-log scale plot.

Loglog is the same as plot, except logarithmic scales are used for both the X-and Y- axes.

Example: x=0:0.05:5; y=exp(-x.^2); loglog(x,y); grid

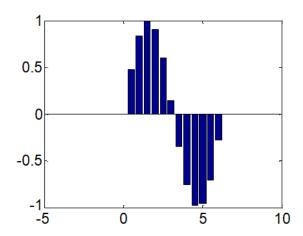
Class (second stage)

Subject (Computer Programming)
Lecturer (Abrar Falah Naji)


2nd term – Lecture No. & Lecture Name (2-D part2)

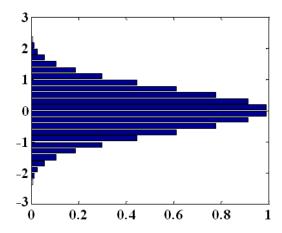
bar: creates a bar graph.

bar(X,Y) draws the columns of the M-by-N matrix Y as M groups of N vertical bars. The vector X must be monotonically increasing or decreasing


Example:

x = -2.9:0.2:2.9; bar(x,exp(-x.*x)); grid on

Example:

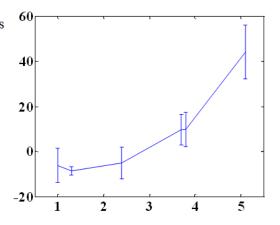

x = 0:0.5:2*pi;bar(x, sin(x));

barh: horizontal bar graph
barh(X,Y) draws the columns of the
M-by-N matrix Y as M groups of N
horizontal bars.

Example:

x = -2.9:.2:2.9; y = exp(-x.*x); barh(x,y);

Class (second stage)

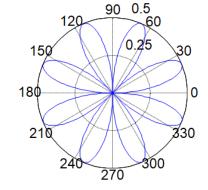

Subject (Computer Programming)
Lecturer (Abrar Falah Naji)

2nd term – Lecture No. & Lecture Name (2-D part2)

errorbar: creates a plot with error bars errorbar (X,Y,L) plots the graph of vector X vs. vector Y with error bars specified by the vectors L and U.

Example:

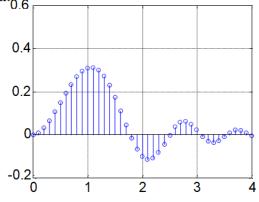
x = [1.0 1.3 2.4 3.7 3.8 5.1]; y = [-6.3 -8.7 -5.2 9.5 9.8 43.9]; coeff = polyfit(x,y,1) yp=polyval(coeff,x) e=abs(yp-y) errorbar(x,y,e); grid e =


7.6079 1.8509 6.9582 6.8052 7.6242 11.9288

polar: creates a plot in polar coordinates of angles versus radin

polar(theta,rho) makes a plot using polar coordinates of the angle theta, in radians, versus the radius rho.

Example:


t=0:.01:2*pi; polar(t,sin(2*t).*cos(2*t));

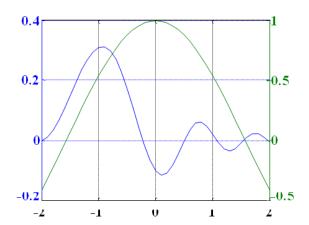
stem: generates stems at each data point 0.6

Example:

x = 0:0.1:4; $y = \sin(x.^2).*\exp(-x);$ stem(x,y);grid

Class (second stage)

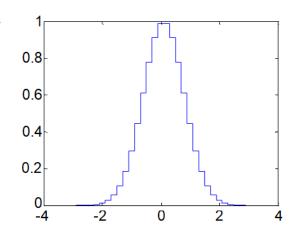
Subject (Computer Programming)
Lecturer (Abrar Falah Naji)


2nd term – Lecture No. & Lecture Name (2-D part2)

plotyy: graphs with y tick labels on the left and right

plotyy(X1,Y1,X2,Y2) plots Y1 versus X1 with y-axis labeling on the left and plots Y2 versus X2 with y-axis labeling on the right.

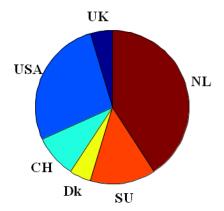
Example:


x=-2:0.1:2; y1=sin(x); y2=cos(x); plotyy(x,y,x,y2); grid

stairs: creates a graph similar to a bar graph, but without internal lines

Example:

x = -2.9:.2:2.9; y = exp(-x.*x); stairs(x,y); title('Stair Chart');



pie: Pie chart.

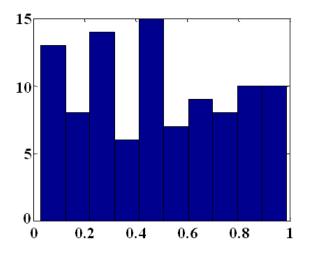
pie(X) draws a pie plot of the data in the vector X. The values in X are normalized via X/sum(X) to determine the area of each slice of pie.

Example:

x = [1 6 2 1 3 9]; label = {'UK','USA','CH','Dk','SU','NL'}; pie(x, label)

Class (second stage)

Subject (Computer Programming) Lecturer (Abrar Falah Naji)


2nd term – Lecture No. & Lecture Name (2-D part2)

hist: creates a histogram

Example:

x=rand(1,100); hist(x);

grid

