

Communication Technical Engineering Department 1st Stage Digital Logic- UOMU028021 Lecture 3 – Conversion and Arithmetic Operations

Dr. Mohammed Fadhil PhD in Computer Networks Email: mohammed.fadhil1@uomus.edu.iq

Al Mustaqbal University - Communication Technical Engineering Department

Octal-to-Decimal Conversion

- Method:
 - Multiply each digit by its positional weight (powers of 8) and sum the results.
- Example:
 - − Convert $372_8 \rightarrow$ Decimal
 - $-372_8 = 3 \times 8^2 + 7 \times 8^1 + 2 \times 8^0$
 - = 3 × 64 + 7 × 8 + 2 × 1
 - **-** = 192 + 56 + 2
 - = 250₁₀

Octal to Decimal Conversion (with Fraction)

Note: Multiply each digit by 8^position Integer part: left to right, powers start at 0 Fractional part: right to left, negative powers

Example 1:

- Convert 24.6₈ to its decimal equivalent
- $24.6_8 = 2 \times 8^1 + 4 \times 8^0 + 6 \times 8^{-1}$
- = 2×8 + 4×1 + 6×0.125
- = 16 + 4 + 0.75
- = 20.75₁₀
- Result:
 - $-24.6_8 = 20.75_{10}$

Example 2:

- Convert 15.2₈ to its decimal equivalent
- $15.2_8 = 1 \times 8^1 + 5 \times 8^0 + 2 \times 8^{-1}$
- = 1×8 + 5×1 + 2×0.125
- = 8 + 5 + 0.25
- = 13.25₁₀
- Result:
 - $-15.2_8 = 13.25_{10}$

Decimal-to-Octal Conversion

• Integer Conversion (Repeated Division by 8)

- Method: Divide by 8, track remainders bottom-up.
- Example: Convert 266₁₀ \rightarrow Octal

Division	Quotient	Remainder
266 ÷ 8	33	2 (LSB)
33 ÷ 8	4	1
4 ÷ 8	0	4 (MSB)

- **Remainders** in **reverse** order: $4 \ 1 \ 2 \rightarrow 412_8$

Decimal-to-Octal Conversion

• Fraction Conversion (Repeated Multiplication by 8)

- Method: Multiply by 8, track carries (integer parts) top-down.
- Example: Convert $0.23_{10} \rightarrow$ Octal (<u>3 places</u>)

Multiplication	Product	Carry (Integer)	Fraction
0.23 × 8	1.84	1 (MSD)	0.84
0.84 × 8	6.72	6	0.72
0.72 × 8	5.76	5 (LSD)	0.76

- Carries in order: $165 \rightarrow 0.165_8$
- The process is terminated after <u>three places</u>; if more accuracy were required, we continue multiplying to obtain more octal digit.

Octal-to-Binary Conversion

• Key Advantage:

- The primary advantage of the octal number system is the ease with which conversion can be made between binary and octal numbers.
- <u>Each octal digit</u> maps directly to a <u>3-bit binary group</u>, simplifying conversions.
- Octal-Binary Reference Table

Octal Digit	0	1	2	3	4	5	6	7
3-Bit Binary	000	001	010	011	100	101	110	111

Octal-to-Binary Conversion

- Integer Conversion
- Convert $472_8 \rightarrow Binary$
 - Step-by-Step:
 - Split each octal digit:
 4 | 7 | 2
 - **Map** to 3-bit binary using the table:
 - $-4 \rightarrow 100$
 - $-7 \rightarrow 111$
 - $-2 \rightarrow 010$
 - Combine results: 100 111 010 → 100111010₂
 - Visual Guide:

– Result:

• 472₈ = 100111010₂

Octal Digit	4	7	2
Binary	100	111	010

Octal-to-Binary Conversion

- Fractional Conversion
- Convert 34.562₈ → Binary
 - Step-by-Step:
 - Split integer and fractional parts: 3 4 5 6 2
 - Map each to 3-bit binary using the table:
 - $3 \rightarrow 011 \mid 4 \rightarrow 100 \mid 5 \rightarrow 101 \mid 6 \rightarrow 110 \mid 2 \rightarrow 010$
 - Combine results (preserve the octal point): 011 100 101 110 010 → 011100.1011100102
 - Visual Guide:

- Result:

Octal Part	3	4	•	5	6	2
Binary	011	100	•	101	110	010

- 34.562₈ = 011100.101110010₂
- (Leading zero can be omitted: 11100.10111001₂)

Binary-to-Octal Conversion

Conversion Rules:

- Group binary digits into sets of 3 (right \rightarrow left for integers, left \rightarrow right for fractions)
- Add leading/trailing zeros if needed to complete groups
- Convert each 3-bit group to octal using reference table
- Example: Simple Conversion
 - Convert $100111010_2 \rightarrow \text{Octal}$
 - Steps:
 - Group from right (LSB): 100 | 111 | 010
 - Convert each group:
 - $-100 \rightarrow 4$
 - 111 \rightarrow 7
 - 010 \rightarrow 2
 - Result:
 - 100111010₂ = 472₈

Binary-to-Octal Conversion

- Padding with Leading/Trailing Zeros
- Key Rule:
 - For integer parts (left of point):
 - Add zeros to the left of the MSB (most significant bit)
 - For fractional parts (right of point):
 - Add zeros to the right of the LSB (least significant bit)
- Visual Examples:
 - Integer Padding (Left Side)
 - Original: 11010110 ← 8 bits (not divisible by 3)
 - Padded: 011 | 010 | 110 ← Added 1 leading zero
 - 3 2 6 ← Octal equivalent
 - Fractional Padding (Right Side)
 - Original: .1011 ← 4 bits (needs 2 more for 3-bit groups)
 - Padded: .101 | 100 ← Added 2 trailing zeros
 - 5 4 ← Octal equivalent

Step-by-Step Padding Guide

Binary Number	Action	Padded Version
11010110	Add 1 leading zero	<mark>0</mark> 11 010 110
101.01101	Integer: Leave as- is + 1 trailing zero (fraction)	101 • 011 01 <mark>0</mark>
.1101	Add 2 trailing zeros	.110 1 <mark>00</mark>

Binary-to-Octal Conversion

- Example: With Padding Zeros
- Convert 11010110₂ → Octal
 - Steps:
 - Add **1 leading zero** to make complete groups:
 - 011 | 010 | 110
 - Convert each group:
 - 011 \rightarrow 3
 - 010 \rightarrow 2
 - 110 \rightarrow 6
 - Visual Guide:
 - Original: 1 1 0 1 0 1 1 0
 - Padded: 011 | 010 | 110
 - 3 2 6
 - Result:
 - 11010110₂ = 326₈

- Example: Fractional Binary
- Convert $1011.01101_2 \rightarrow \text{Octal}$
 - Steps:
 - Integer part (pad left):
 - − Original: 1011 → Needs 2 leading zeros
 - Padded: 001 | 011
 - Convert: 1 3
 - Fraction part (pad right):
 - Original: .01101 → Needs 1 trailing zero
 - Padded: .011 | 010
 - Convert: 3 2
 - Visual Guide:
 - Original: 1011•01101
 - Padded: 001|011•011|010
 - 1 3 3 2
 - Result:
 - 1011.01101₂ = 13.32₈

Hexadecimal Number System (Base-16)

		Hex	Decimal	Binary
		0	0	0000
•	Key Advantages:	1	1	0001
	 Compact representation of binary data 	2	2	0010
	(1 nex digit = 4 binary bits)	3	3	0011
	 Direct mapping to memory addresses and machine code 	4	4	0100
	Liniversal standard in web design (CSS	5	5	0101
	- Oniversal standard in web design (CSS colors) assembly language and	6	6	0110
	debugging	7	7	0111
•	Why Hexadecimal	8	8	1000
	Compact Poprocontation:	9	9	1001
	 Compact Representation. 1 byte (8 bits) = 2 bey digits 	А	10	1010
	- Example: $11010011_2 = D3_{16}$	B	11	1011
	Easy Binary Conversion:	С	12	1100
	$- \text{Binary: 1101 0011} \rightarrow \text{Split into nibbles}$ - Hey: D 3 → D3.	D	13	1101
		E	14	1110
		F	15	1111

Hexadecimal-to-Decimal Conversion

- Key Principle:
 - Every hex digit's value depends on its positional weight (powers of 16)
- Method:
 - Multiply each hex digit by its positional weight (powers of 16)
- Formula:
 - Decimal = $d_n \times 16^n + ... + d_1 \times 16^1 + d_0 \times 16^0$
 - (Where d = hex digit value, n = position from right starting at 0)
- Example 1:
 - Convert 356₁₆ to decimal
 - 356

$$- | | - 6 \times 16^{\circ} = 6 \times 1 = 6$$

$$- | - 5 \times 16^1 = 5 \times 16 = 80$$

- $3 \times 16^2 = 3 \times 256 = 768$
- $Total = 768 + 80 + 6 = 854_{10}$

- Example 2:
 - Convert 2AF₁₆ to decimal
 - 2 A F
 - $| | 15 \times 16^{\circ} = 15 \times 1 = 15$
 - $| 10 \times 16^{1} = 10 \times 16 = 160$
 - $2 \times 16^2 = 2 \times 256 = 512$
 - Total = 512 + 160 + 15 = 687₁₀

TRY YOUSELF! – CLASS ACTIVITY-Convert 2AC₁₆ to decimal

Decimal-to-Hexadecimal Conversion

- Steps:
 - Divide by 16, track remainders (convert ≥10 to A-F).
 - Read remainders <u>bottom-up.</u>
- Example 1:
 - Convert 423₁₀ to hex

Division	Quotient	Remainde	er Hex Digit
423 ÷ 16	26	7	7
26 ÷ 16	1	10	А
1 ÷ 16	0	1	1
Decult			1 4 7

- Result: Read $\uparrow \rightarrow 1A7_{16}$

- Example 2:
 - Convert 214₁₀ to hex
 - 214 ÷ 16 = 13 R6 (6)
 - 13 ÷ 16 = 0 R13 (D)
 - Result: \uparrow Read up \rightarrow D6₁₆

TRY YOUSELF! – CLASS ACTIVITY-Convert 1024₁₀ to Hexadecimal

Hexadecimal-to-Binary Conversion

- Direct 4-Bit Grouping Method
- Key Rule:
 - Each hexadecimal digit converts to exactly 4 binary bits (nibble)
 - Works for both integers and fractions
- Conversion Steps:
 - Separate each hex digit
 - Convert to 4-bit binary using the reference table
 - Combine all binary groups

- Example: Convert 9F2₁₆ to Binary
 - 9 F 2
 - 1 1
 - 1001 1111 0010
 - Result: 9F2₁₆ = 100111110010₂

- Example: Convert A3.C5₁₆ to Binary
 - A 3 . C 5
 - $\uparrow \uparrow \uparrow \downarrow$
 - 1010 0011 . 1100 0101
 - Result: A3.C5₁₆ = 10100011.11000101₂

Binary-to-Hexadecimal Conversion

- 4-Bit Grouping Method (Reverse of Hex-to-Binary)
- Steps:
 - Group binary digits into 4-bit nibbles (start from right for integers, left for fractions)
 - Pad with leading/trailing zeros if needed
 - Convert each group to its hex equivalent

- Example: Convert 101110100110₂ to hex
 - Binary: 1011 1010 0110
 - $\qquad \downarrow \qquad \downarrow \qquad \downarrow$
 - Hex: B A 6
 - Result: 101110100110₂ = BA6₁₆

Hexadecimal-to-Octal Conversion

- Two-Step Method:
 - Hex \rightarrow Binary \rightarrow Octal
- Steps:
 - Convert each hex digit to 4-bit binary
 - Regroup binary into 3-bit chunks (for octal)
 - Pad with zeros if needed
 - Convert to octal digits

- Example: Convert 2F₁₆ to octal
 - Step 1: Hex \rightarrow Binary
 - 2 F \rightarrow 0010 1111
 - Step 2: Regroup for octal
 - − 00 101 111 → Pad → 00 101 111
 (drop unnecessary leading zero)
 - Step 3: Binary \rightarrow Octal
 - 101=5, 111=7
 - Result: 2F₁₆ = 57₈

Hexadecimal-to-Octal Conversion

Example: Convert 9F₁₆ to octal

- Step 1: Hex \rightarrow Binary (4-bit groups)
 - 9 F → 1001 1111
- Step 2: Binary → Octal (3-bit groups, pad leading zeros)
 - Original: 1001 1111
 - Pad left: 010 011 111
 - Regroup: 010 011 111
- Step 3: Binary \rightarrow Octal
 - 010 = 2, 011 = 3, 111 = 7
- Result: 2378

Review Questions: Number System Conversions

- 1. Binary Conversion
 - Find the binary equivalent of decimal 363. Then, convert the resulting binary number to octal.
- 2. Maximum 8-Bit Value
 - What is the largest decimal number that can be represented using 8 bits in binary?
- 3. Binary-to-Decimal
 - Convert the binary number 1101011₂ to its decimal equivalent.
- 4. Binary Counting Sequence
 - Determine the next binary number in the sequence after 10111₂.
- 5. MSB Weight Calculation
 - Calculate the positional weight (decimal value) of the Most Significant Bit (MSB) in a 16-bit binary number.
- 6. Octal-to-Decimal
 - Convert the octal number 614₈ to decimal.
- 7. Decimal-to-Octal
 - Convert the decimal number 146₁₀ to octal.

- 8. Hexadecimal-to-Decimal
 - Convert the hexadecimal number 24CE₁₆ to decimal.
- 9. Decimal-to-Hex-to-Binary
 - First, convert the decimal number 3117₁₀ to hexadecimal. Then, convert the resulting hexadecimal number to binary.
- 10. Binary-to-Decimal (Fractional)
 - Solve for x in the equation: $1011.11_2 = x_{10}$
- 11. Octal-to-Decimal (Fractional)
 - Solve for x in the equation: $174.3_8 = x_{10}$
- **12.** Decimal-to-Binary (Fractional)
 - Solve for x in the equation: $10949.8125_{10} = x_2$
- 13. Hexadecimal-to-Binary (Fractional)
 - Solve for x in the equation: $2C6B.F2_{16} = x_2$

Binary Arithmetic Fundamentals

- Key Definitions
 - Binary Addition
 - Definition: Bitwise operation following four rules with possible carry propagation.
 - Carry: Overflow when the sum of bits exceeds 1 (similar to decimal "carrying the 1").
 - Binary Subtraction (Direct Method)
 - Definition: Bitwise operation requiring borrowing from higher positions when subtracting a larger digit from a smaller one.
 - 2's Complement Method
 - 1's Complement: Inverting all bits of a number $(1 \rightarrow 0, 0 \rightarrow 1)$.
 - 2's Complement: Adding 1 to the 1's complement to represent negative numbers.
 - Purpose: Simplifies subtraction by converting it to addition (used in CPUs).

Binary Addition

Rules Table

A + B	Sum	Carry
0 + 0	0	0
0 + 1	1	0
1+1	0	1
1+1+1	1	1

- Example: 011₂ (3) + 110₂ (6)
 - 011
 - **+ 110**
 - 1001 (9)
 - Step-by-Step:
 - LSB (Right): 1 + 0 = 1
 - Middle: 1 + 1 = 0 (carry 1)
 - MSB (Left): 0 + 1 + 1 (carry) = 0 (carry 1)
 - Final Carry: Leading $1 \rightarrow 1001_2$

Carry: 11

011

+110

1001

Binary Subtraction (Direct Method)

Rules Table

A – B	Result	Borrow
0 - 0	0	0
1 – 0	1	0
1 – 1	0	0
0 - 1	1	1

- Example: 101₂ (5) 011₂ (3)
 - 101
 - - 011
 - 010 (2)
 - Step-by-Step:
 - LSB: 1 1 = 0
- 101 - -011 - ------- 010

Borrow: 1

- Middle: $0 1 \rightarrow Borrow 1 \rightarrow 10 1 = 1$
- MSB: (0 after borrow) 0 = 0
- Final result: 010

1's and 2's Complement Conversion

• Definitions

- 1's Complement:
 - Definition: Flip all bits of a binary number $(0 \rightarrow 1, 1 \rightarrow 0)$.
 - Example: 0101 \rightarrow 1010.
- 2's Complement:
 - Definition: 1's complement + 1. Represents negative numbers.
 - Example: $0101 \rightarrow 1010 (1's) \rightarrow 1011 (2's)$.

Key Advantages of 2's Complement:

- Simplifies hardware design (uses same circuits for + and -)
- Eliminates separate subtraction logic
- Represents negative numbers in binary
- The leftmost bit (MSB) is the sign bit (0 = positive, 1 = negative).

 Example: Convert 1011 0101₂ (Original)

Step	Binary Value	Visual Representation
Original Number	1011 0101	10110101
1's Complement	0100 1010	01001010
2's Complement	0100 1010 + 1 = 0100 1011	01001011

1's and 2's Complement Conversion

Why Are They Used?

Feature	1's Complement	2's Complement
Negative Rep.	Two zeros (0000 and 1111)	Single zero (0000)
Hardware	Requires extra step for subtraction	Simplifies arithmetic (no carry logic)
Overflow	Detected by end-around carry	Detected by sign-bit mismatch

1's Complement Examples

- Example 1: Representing Negative Numbers
 - Number: -3 in 4-bit binary
 - Step 1: Write +3 → 0011
 - Step 2: Flip all bits → 1100 (This is -3 in 1's complement).
- Example 2: Subtraction Using 1's
 Complement
 - Calculate: 5 3
 - Step 1: Represent -3 → 1100 (1's complement of 0011).
 - Step 2: Add to 5 (0101):

– **0101 (5)**

- + 1100 (-3 in 1's)
- 10001
- Step 3: End-around carry → Add the overflow 1 back:
 - 0001 (from 10001)
 - + 🚺 (carry)
 - 0010 (2) → Correct!
- Problem: Without the extra carry step, you'd get 0001 (wrong!).

2's Complement Examples

- Example 1: Representing Negative Numbers
 - Number: -3 in 4-bit binary
 - Step 1: Write +3 → 0011
 - Step 2: Flip all bits → 1100 (This is -3 in 1's complement).
 - Step 3: Add 1 → 1101 (This is -3 in 2's complement).
- Example 2: Subtraction Using 2's Complement
 - Calculate: 5 3
 - Step 1: Represent -3 → 1101 (2's complement of 0011).
 - Step 2: Add to 5 (0101):

- **0101 (5)**
- + 1101 (-3 in 2's)
- 10010 → Discard overflow →
 `0010` (2) → Correct!
- No extra steps needed

Key Differences in Examples

Operation	1's Complement	2's Complement
Represent -3	1100 (flipped bits)	1101 (flipped bits + 1)
Calculate 5-3	Needs end-around carry (10001 → 0010)	Simple addition (10010 \rightarrow discard \rightarrow 0010)

Homework!

Convert -6 to 8-bit 2's complement. Subtract 7 - 4 using 2's complement.

THANK YOU