Electronic Circuits : Sheet No 1

Exercises:

- 1. Given an α_{dc} of 0.998, determine I_C if $I_E = 4$ mA.
- 2. Determine α_{dc} if $I_E = 2.8$ mA and $I_B = 20$ μ A.
- 3. Find I_E if $I_B = 40 \mu A$ and α_{dc} is 0.98.
- 4. Given that $\alpha_{dc} = 0.987$, determine the corresponding value of β .
- 5. Given $\beta_{dc} = 120$, determine the corresponding value of α .
- 6. Given that $\beta_{dc} = 180$ and $I_C = 2.0$ mA, find I_E and I_B .
- 7. A transistor has $I_{CBO} = 48$ nA and $\alpha = 0.992$.
 - i. Find β and I_{CEO} .
 - ii. Find its (exact) collector current (I_C) when $I_B = 30 \mu A$.
 - iii. Find the approximate collector current, neglecting leakage current.

Q1: Given a α_{dc} of 0.998, determine IC if IE = 4 mA.

Sol:

To determine the collector current I_C from the emitter current I_E and the current gain α , we can use the following relationship:

$$I_C = \alpha I_E$$

Given:

- $\alpha = 0.998$
- $I_E = 4 \,\mathrm{mA}$

Now, substitute the given values:

$$I_C=0.998 imes 4\,\mathrm{mA}$$

$$I_C=3.992\,\mathrm{mA}$$

So, the collector current I_C is approximately $3.992\,\mathrm{mA}.$

Q2: Determine α dc if IE = 2.8 mA and IB = 20 μ A

Sol:

To determine α_{DC} (the DC current gain), we use the following relationship between the emitter current I_E , base current I_B , and collector current I_C :

$$I_E = I_C + I_B$$

and

$$\alpha_{DC} = \frac{I_C}{I_E}$$

Step 1: Calculate I_{C}

From the equation $I_E=I_C+I_B$, we can find the collector current I_C :

$$I_C = I_E - I_B$$

Given:

- $I_E = 2.8\,\mathrm{mA} = 2.8 imes 10^{-3}\,\mathrm{A}$
- $I_B = 20 \,\mu\mathrm{A} = 20 \times 10^{-6}\,\mathrm{A}$

Now, substitute these values:

$$I_C = 2.8 \, \mathrm{mA} - 20 \, \mu \mathrm{A}$$

$$I_C = 2.8 \,\mathrm{mA} - 0.02 \,\mathrm{mA}$$

$$I_{\sim} = 2.78 \,\mathrm{m}\,\Lambda$$

Step 2: Calculate α_{DC}

Now that we have I_C , we can calculate $lpha_{DC}$:

$$\alpha_{DC} = \frac{I_C}{I_E}$$

Substitute the values:

$$\alpha_{DC} = \frac{2.78\,\mathrm{mA}}{2.8\,\mathrm{mA}}$$

$$\alpha_{DC} pprox 0.9921$$

Final Answer:

So. α_{DC} is approximately 0.9921.

Q7: A transistor has ICBO = 48 nA and α = 0.992.

- i. Find and ICEO.
- ii. Find its (exact) collector current (IC) when IB = 30 A.
- iii. Find the approximate collector current, neglecting leakage current.

Sol:

Given:

- $I_{CBO}=48\,\mathrm{nA}$ (leakage current),
- lpha=0.992 (current gain in the common base configuration),
- $I_B=30\,\mu A$ (base current).

i. Find eta and I_{CEO}

1. Find β :

The current gain β in the common-emitter configuration is related to α by the following relationship:

$$\beta = \frac{\alpha}{1 - \alpha}$$

Substitute the given value of lpha=0.992:

$$\beta = \frac{0.992}{1 - 0.992} = \frac{0.992}{0.008} = 124$$

So, the current gain β is:

$$\beta=124$$

2. Find I_{CEO} :

The collector current I_{CEO} is the collector current when the base current is zero, considering only the leakage current. The formula for I_{CEO} is:

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha}$$

Substitute the given values:

$$I_{CEO} = \frac{48\,\mathrm{nA}}{1-0.992} = \frac{48\,\mathrm{nA}}{0.008} = 6000\,\mathrm{nA} = 6\,\mu A$$

So, the value of I_{CEO} is:

$$I_{CEO} = 6 \,\mu A$$

ii. Find the exact collector current I_C when $I_B=30\,\mu A$

The exact collector current I_{C} is the sum of two components:

- 1. The component due to the base current I_B , which is $\beta \cdot I_B$.
- 2. The leakage current I_{CEO} .

The formula for the exact collector current is:

$$I_C = \beta \cdot I_B + I_{CEO}$$

Substitute the known values:

$$I_C=124\cdot 30\,\mu A+6\,\mu A$$

$$I_C = 3720\,\mu A + 6\,\mu A = 3726\,\mu A$$

Thus, the exact collector current is:

$$I_C = 3726 \,\mu A = 3.726 \,\mathrm{mA}$$

2. Find I_{CEO} :

The collector current I_{CEO} is the collector current when the base current is zero, considering only the leakage current. The formula for I_{CEO} is:

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha}$$

Substitute the given values:

$$I_{CEO} = \frac{48\,\mathrm{nA}}{1-0.992} = \frac{48\,\mathrm{nA}}{0.008} = 6000\,\mathrm{nA} = 6\,\mu A$$

So, the value of I_{CEO} is:

$$I_{CEO} = 6 \mu A$$

iii. Find the approximate collector current, neglecting leakage current

If we neglect the leakage current I_{CBO} , the collector current is approximately:

$$I_C \approx \beta \cdot I_B$$

Substitute the known values:

$$I_C \approx 124 \cdot 30 \, \mu A = 3720 \, \mu A = 3.72 \, \mathrm{mA}$$

Thus, the approximate collector current (neglecting leakage current) is:

$$I_C \approx 3.72\,\mathrm{mA}$$

Final Answers:

- β = 124,
- $I_{CEO}=6\,\mu A$,
- $\bullet \quad \text{Exact collector current } I_C = 3.726\,\text{mA}, \\$
- Approximate collector current $I_C pprox 3.72\,\mathrm{mA}$ (neglecting leakage current).

<mark>Q6:</mark>

Given:

- $eta_{DC}=180$ (current gain)
- ullet $I_C=2.0\,\mathrm{mA}$ (collector current)

Step 1: Find the emitter current $I_{\it E}$

The relationship between the collector current I_C , emitter current I_E , and base current I_B is:

$$I_C = eta_{DC} imes I_B$$

Also, the emitter current is the sum of the collector and base currents:

$$I_E = I_C + I_B$$

We can express I_B in terms of I_C and eta_{DC} as:

$$I_B = rac{I_C}{eta_{DC}}$$

Substitute the given values:

$$I_B = \frac{2.0\,\mathrm{mA}}{180}$$

$$I_B = 0.0111\,\mathrm{mA} = 11.1\,\mu\mathrm{A}$$

Step 2: Find the emitter current $I_{\it E}$

Now, we can calculate \emph{I}_{E} :

$$I_E = I_C + I_B = 2.0\,\mathrm{mA} + 0.0111\,\mathrm{mA}$$

$$I_E=2.0111\,\mathrm{mA}$$