
Structure Programming

Lec.2: Functions II

First Stage

Al-Mustaqbal University

College of Science

Artificial Intelligence Sciences

Department

1 Study Year: 2024-2025 Asst. Lect. Ali Al-khawaja

Function Overloading

Multiple functions can have the same name with different parameters.

int myFunction(int x)

float myFunction(float x)

double myFunction(double x, double y)

Why Function Overloading?

• Easy to Use – Same function name for different parameter types or counts.

• Improves Readability – Cleaner and easier to understand code.

• Reduces Duplication – No need to create multiple function names for similar

tasks.

• Supports Polymorphism – Enables compile-time polymorphism (flexible

behavior).

• Better Organization – Groups related logic under one name.

Consider the following example, which have two functions that add numbers of

different type:

Example:

int plusFuncInt(int x, int y) {

 return x + y;

}

double plusFuncDouble(double x, double y) {

 return x + y;

}

int main() {

 int myNum1 = plusFuncInt(8, 5);

 double myNum2 = plusFuncDouble(4.3, 6.26);

Structure Programming

Lec.2: Functions II

First Stage

Al-Mustaqbal University

College of Science

Artificial Intelligence Sciences

Department

2 Study Year: 2024-2025 Asst. Lect. Ali Al-khawaja

 cout << "Int: " << myNum1 << "\n";

 cout << "Double: " << myNum2;

 return 0;

}

Instead of defining two functions that should do the same thing, it is better to

overload one.

In the example below, we overload the plusFunc function to work for

both int and double:

Example:

int plusFunc(int x, int y) {

 return x + y;

}

double plusFunc(double x, double y) {

 return x + y;

}

int main() {

 int myNum1 = plusFunc(8, 5);

 double myNum2 = plusFunc(4.3, 6.26);

 cout << "Int: " << myNum1 << "\n";

 cout << "Double: " << myNum2;

 return 0;

}

Variable Scope

Now that you understand how functions work, it is important to learn how variables

act inside and outside of functions. In C++, variables are only accessible inside the

region they are created. This is called scope.

Structure Programming

Lec.2: Functions II

First Stage

Al-Mustaqbal University

College of Science

Artificial Intelligence Sciences

Department

3 Study Year: 2024-2025 Asst. Lect. Ali Al-khawaja

Local Scope

A variable created inside a function belongs to the local scope of that function, and

can only be used inside that function:

void myFunction() {

 // Local variable that belongs to myFunction

 int x = 5;

 // Print the variable x

 cout << x;

}

int main() {

 myFunction();

 return 0;

}

Note: A local variable cannot be used outside the function it belongs to. If you try

to access it outside the function, an error occurs:

void myFunction() {

 // Local variable that belongs to myFunction

 int x = 5;

}

int main() {

 myFunction();

 // Print the variable x in the main function

 cout << x;

 return 0;

}

 Output:

prog.cpp: In function ‘int main()’:
prog.cpp:13:11: error: ‘x’ was not declared in
this scope

Structure Programming

Lec.2: Functions II

First Stage

Al-Mustaqbal University

College of Science

Artificial Intelligence Sciences

Department

4 Study Year: 2024-2025 Asst. Lect. Ali Al-khawaja

Global Scope

A variable created outside of a function, is called a global variable and belongs to

the global scope. Global variables are available from within any scope, global and

local:

// Global variable x

int x = 5;

void myFunction() {

 // We can use x here

 cout << x << "\n";

}

int main() {

 myFunction();

 // We can also use x here

 cout << x;

 return 0;

}

Note: If you operate with the same variable name inside and outside of a function,

C++ will treat them as two separate variables; One available in the global scope

(outside the function) and one available in the local scope (inside the function)

Example:

// Global variable x

int x = 5;

void myFunction() {

 // Local variable with the same name as the global variable (x)

 int x = 22;

Structure Programming

Lec.2: Functions II

First Stage

Al-Mustaqbal University

College of Science

Artificial Intelligence Sciences

Department

5 Study Year: 2024-2025 Asst. Lect. Ali Al-khawaja

 cout << x << "\n"; // Refers to the local variable x

}

int main() {

 myFunction();

 cout << x; // Refers to the global variable x

 return 0;

}

However, you should avoid using the same variable name for both globally and

locally variables as it can lead to errors and confusion. In general, you should be

careful with global variables, since they can be accessed and modified from any

function:

Example:

// Global variable x

int x = 5;

void myFunction() {

 cout << ++x << "\n"; // Increment the value of x by 1 and print it

}

int main() {

 myFunction();

 cout << x; // Print the global variable x

 return 0;

}

Structure Programming

Lec.2: Functions II

First Stage

Al-Mustaqbal University

College of Science

Artificial Intelligence Sciences

Department

6 Study Year: 2024-2025 Asst. Lect. Ali Al-khawaja

// The value of x is now 6 (no longer 5)

