

P a g e | 1

Department of Cyber Security

Structured Programming – Lecture (7)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security

Subject:

Structured Programming

Class:

1st stage

Lecturer:

Dr. Abdulkadhem A. Abdulkadhem

Lecture: (7)

Two-Dimensional Arrays

P a g e | 2

Department of Cyber Security

Structured Programming – Lecture (7)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

1. Introduction to Two-Dimensional Arrays

A two-dimensional array (2D array) can be thought of as a table, where data is arranged in

rows and columns. It is essentially an array of arrays.

In C++, a two-dimensional array is declared by specifying two sizes: one for the rows and one

for the columns.

2. Declaring a Two-Dimensional Array

The syntax to declare a 2D array is as follows:

Where:

 datatype: Type of elements in the array (e.g., int, float, char).

 Array_name: Name of the array.

 row-size: Number of rows in the 2D array.

 col-size: Number of columns in the 2D array.

Example:

Here, num is a 2D array with 3 rows and 4 columns.

P a g e | 3

Department of Cyber Security

Structured Programming – Lecture (7)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

3. Initializing a Two-Dimensional Array

You can initialize a 2D array at the time of declaration by specifying the values for all elements

in the array.

a. Static Initialization

Example:

int matrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

This initializes the array matrix with two rows and three columns:

 Row 1: {1, 2, 3}

 Row 2: {4, 5, 6}

b. Partial Initialization

If the number of elements specified is less than the total size of the array, the remaining

elements are automatically initialized to zero.

Example:

int matrix[3][3] = {{1, 2}, {3, 4}};

This will initialize:

 Row 1: {1, 2, 0}

 Row 2: {3, 4, 0}

 Row 3: {0, 0, 0}

c. Zero Initialization

You can initialize the entire array to zero by specifying {0}:

int matrix[3][3] = {0}; // All elements set to 0

4. Accessing Elements of a Two-Dimensional Array

You access elements of a 2D array using two indices: one for the row and one for the column.

Syntax:

array_name[row_index][column_index]

P a g e | 4

Department of Cyber Security

Structured Programming – Lecture (7)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Example:

int matrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

cout << matrix[1][2]; // Accessing element at row 1, column 2 (output: 6)

Here, matrix[1][2] refers to the element at row 1 (second row) and column 2 (third column),

which is 6.

5. Reading and Printing Two-Dimensional Array Elements

You can read and print elements of a 2D array . The outer loop will iterate using nested loops

over the rows, and the inner loop will iterate over the columns.

Example:

#include <iostream>

using namespace std;

int main() {

 int matrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

 // Reading and printing the 2D array elements

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 3; j++) {

 cout << "Element at [" << i << "][" << j << "] is " << matrix[i][j]

<< endl;

 }

 }

 return 0;

}

Output:

Element at [0][0] is 1

Element at [0][1] is 2

Element at [0][2] is 3

Element at [1][0] is 4

Element at [1][1] is 5

Element at [1][2] is 6

6. Modifying Elements of a Two-Dimensional Array

You can modify the elements of a 2D array just like with one-dimensional arrays, by using the

appropriate row and column indices.

Example:

P a g e | 5

Department of Cyber Security

Structured Programming – Lecture (7)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

#include <iostream>

using namespace std;

int main() {

 int matrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

 // Modify element at row 1, column 2

 matrix[1][2] = 100;

 // Print the updated matrix

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 3; j++) {

 cout << matrix[i][j] << " ";

 }

 cout << endl;

 }

 return 0;

}

Output:

1 2 3

4 5 100

7. Processing Elements of a Two-Dimensional Array

You can perform various operations on the elements of a 2D array, such as summing all

elements, finding the maximum element, etc.

Example: Calculating the sum of all elements in a 2D array.

#include <iostream>

using namespace std;

int main() {

 int matrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

 int sum = 0;

 // Calculate sum of all elements

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 3; j++) {

 sum += matrix[i][j];

 }

 }

 cout << "The sum of all elements in the matrix is: " << sum << endl;

 return 0;

}

P a g e | 6

Department of Cyber Security

Structured Programming – Lecture (7)

1st Stage

 Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Output:

The sum of all elements in the matrix is: 21

8. Important Notes on Two-Dimensional Arrays

 Memory Layout: A 2D array in C++ is stored in row-major order, meaning the elements

of each row are stored contiguously in memory.

 Bounds Checking: C++ does not perform bounds checking. Accessing an element

outside the array's declared size will result in undefined behavior.

Conclusion

In this lecture, we covered:

 How to declare and initialize two-dimensional arrays.

 How to access, modify, read, and print elements in a 2D array.

 Basic operations like summing array elements.

Two-dimensional arrays are used when dealing with problems that involve matrices or grids,

such as image processing, board games, and data representation in tables.

