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8 The Del Operator
If the force field is conservative so that the components are given by the partial
derivative of potential energy function.
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We can now express a conservative force F vectorially as:

Where: V is del operator given as:

= - 0 d
V—la+]5+kz

1. VV = GradientV or (grad V)

e Mathematically, the gradient of a function is a vector that represents the
maximum spatial derivative of the function in direction and magnitude.
Physically, the negative gradient of the potential energy function gives
the direction and magnitude of the force that acts on a particle located in
a field created by other particles.

The meaning of the negative sign is that the particle 1s urged to move in
the direction of decreasing potential energy rather than in the opposite

direction.
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2.VXF =Curl f F ool asie (Gll) s qay VX F @

The condition that a force be conservative can be written compactly as

(4) (Then The Force F is Conservative )

3.V.F = divergence of F

(V.F)is called the divergence of F which gives a measure of the density of
the sources of the field at a given point, which 1s of particular importance in

the theory of electricity and magnetism.
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Example: Find the force field of the potential Function V = x2 + xy + xz.

Solution:

Applying the % operator
F=-VV
= —(2xi + jx + kx)

= —2xi — jx — kx

Example: Is the force field F= ixy + jxz + kyz conservative?

Solution:

Ji k
92 9
dy 0z
Xz yz

V X

<&

VxF=i(5 ) =5 (2) = (502 =5 09) + k(5 62 = 55 (k)
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VXF =i(z—x)—j0)+k(z—x)
V X ﬁ' 0 - ﬁ is non conservative. Lilae 2 Jadl ‘A"'“" s %5""“‘3 ¥ 4l

Example: For what values of the constants a, b and c 1s the force
F = i(ax + by?) + jcxy conservative?

Solution:

5

[ Ji k
i ad
VXF =

9 @ B
ax dy dz
ax+by? cxy 0
=i(0—-0)—j(0)+ k (cy —2by)
=k (c—2b)y
For conservative force must V X F = 0
~c—2b=0
c=2b

So F be conservative when ¢ = 2b

Al duaal Y @ das Abilas oSS laxie F o3V X F = 0 58 ¢ = 2b Laxe

9 The Del Operator in Other Coordinates
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1. Cartesian Coordinates (Rectangular Coordinates)
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2. Cylindrical Coordinates
P(r, ¢ 2)
X =pcos¢e

y=psing
zZ=12Z

3. Spherical Coordinates
P(r,8, )

x = rsinf cos ¢

y =rsinfsing
z=rcos 0

A dl) AEaY) b jglaall G Gl G D) Jsaal)

Conversion between Cartesian, cylindrical, and spherical coordinates

From
Cartesian Cylindrical Spherical

X = pcos ¢ x = rsinf cos ¢
Cartesian y =psing y = rsinf sin ¢
z=2z Z =1rcos 0

p=vx?+y? p =rsing
Cylindrical @ = arctan (% ) Q=9

Z=1rcos 0O
zZ=2Z

ri=afaZEy? fz2

VA
Spherical | ¢ = arctan (;)

@ = arctan (%)
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10 The Harmonic Oscillator in Two and There Dimensions
Consider the motion of a particle subject to a linear restoring force that is
always directed toward a fixed point, the origin of our coordinate system. Such
a force can be represented by the expression.
(Sla) Ay Cadaa Aalilgil) aufjiaY) A al))
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o e % dZF
F=—-kr=ma=m—
dt?

The motion of particle in three dimensions represent as particle attached to a

set of elastic springs as shown in Figure:
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A model of a three-dimensional harmonic oscillator

1. Harmonic Motion in Two Dimension
In the case of motion in a single plane (two dimensions), force two

component equations equivalent to:
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(2

E.=m& = —kx}
E, =mj = —ky) ™

These are separated, and we can immediately write down the solutions in the

form: s i 8 5 CuSie dlles Did (2) oalaleal
x = Acos(wt + @) (3) () sladl (ga¥y (x) olatls Laahaa! (laie Aufzia) 4<)n)
y = Bcos(wt + B) (X)) 5 2y Gsiuse mhus ey

Where w = \[E
m

The constants of integration A, B, a, andp are determined from the initial

conditions in any given case.
Blare s &Y ailny) Jag il 8 laalsd) oS culss B, @, B, A

To find the equation of the path, we eliminate the time 7 between the two
equations.

OET Gl e ST £ a3l Calas asial 138 A Slaall Alslae Say
y = Bcos(wt + a + A)
Where: A=f —a

Cosine for sum of two angles is: cos(6; + 8,) = cos 8, cos B, — sin b, sin b,
o cos(wt + a + A) = cos(wt + @) cos A — sin(wt + a) sin A

Eqn. (5) became:

y = B [cos(wt + @) cos A — sin(wt + a) sin A]

Eqns. (3) and (4) rewrite as:

= cos(wt + )

= cos(wt + B) (10)
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From Eqn. (8)
% = cos(wt + a) cos A — sin(wt + a) sin A (1)

From. Eqn. (9)

&
t = —
cos(wt + a) 1

Also,
sin(wt + a) = (1 — cos?(wt + a))'?
Then Eqn. (11) be:

% = fcosA — (1 — cos?(wt + a)) 2 sinA
y _x \Y2
E-;cosA—(l—;) sinA

p B a2

2 AcosA— (1 AZ) sinA

Squaring both sides:

Y2 _g¥x 2 st A= {1 =% sin?
5z 2 5,C0sA+-ocosT A= (1 Az)sm A
y2

2yx x2 x2 .
Y P osA+cos? A+ sin? A =sin?A
B2 BA A2 x2

y2

2yx x2 2 ) i 2
— — ——cosA + = (cos* A+ sin“ A) = sin“ A
B BA A

2 2 cosA + o sin? A (11) Quadratic equation in x and
A2 AB B2 q y

Now the general quadratic
ax?+ bxy +cy’+dx+ey=f
Eqn. (12) represents an ellipse, a parabola, or a hyperbola, depending on

whether the discriminant (b? — 4ac)

(hyperbola) i) akas ) (Parabola) ; il<a ki o) (ellipse) (ails ahad i (12) dalaal)
L5l Gle Cinsa 5l a5l Al W) (gl (B% — 4ac )l LAl ) dad o adiey 13y




Lecture one: Oscillations Dr. Mokhalad Ali = Mechanics

a b and c are calculated from the comparison between eqn.(11) and Eqn. (12)

1. 2 cosA
a=—=,b=-— 5 G
A2 AB

2
2cosA 1
[ ] —4 = b? — 4ac
AB A2B?

__4cos?A 1

~ " a2p? _4A232

__ 4(cos?A-1) _ —4sinZ2A
T A2B2 A2B?

_ (2 sin A) 2
AB

In our case the discriminant 1s equal (—(

2sinA
AB

2
) ) , which is negative, so the

path is an ellipse as shown in Figure

L@y 0SS o Joant 13 Gl o aaall aal) Lia

The Eqn. of path:

2 g
A2 B2

2

Which is Eqn. of ellipse whose axes coincide with the coordinate axes.
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A=0 orm

Then the Eqn. of path reduces to that of straight line:

B
y=1t-x aifiea 1t J<& (05K Al s ia
Where (-) negative for A= 0

(1) posttive for A= 1

o In the general case, it is possible to show that the axis of the elliptical

path 1s inclined to the x-axis by the angle (1) where

2ABcos A
A2 _32

(W) Wylaia gl pslsall e daa (ggran Hlus e diast (Saa ple JS

tan2y =

|:> Example:

Find the potential energy for harmonic oscillator: a) two dimensions b) three
dimensions

Solution:

a. Two Dimensions
F =~k 5~ koyj
w VUXF=0 Conservative force

F =~V 4B 3y V s 23 50 03 Balaa 5 ) Jlowa

av .

F - _klxl’ - dy

2 Yo kx o dV = kyxdx = 2y
dx 2

av 1
i kiy - dV =kyydy = Ekﬂ’z
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b. Three dimensions
F - _klxi i kzyj - k3Zk

Also, Vx F =0 Conservative force

. 1 2 1 2 1 2
-V—2k1x +2k2y +2k3z




