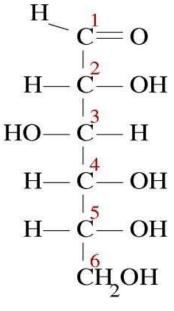
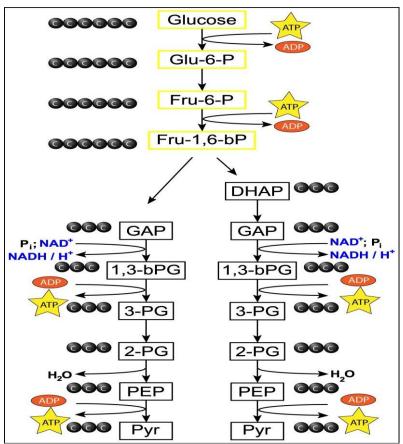
Glycolysis

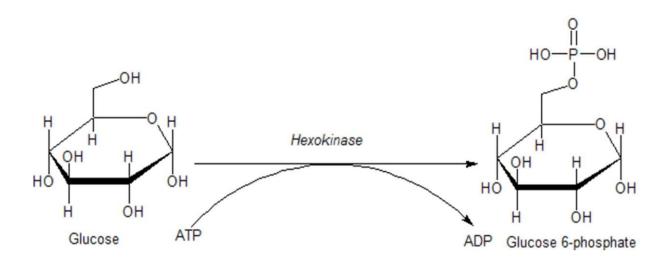

DR. Bariaa Ali Maki PHD clinical chemistry

Definition

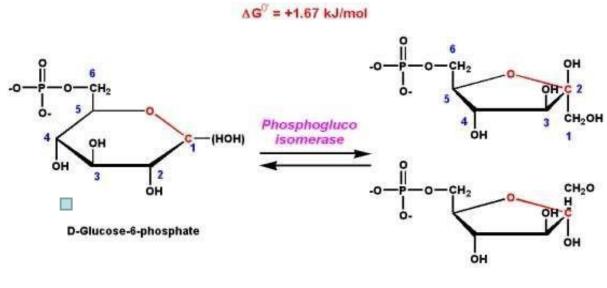
Derived from Greek word


Glykys = Sweet Lysis = splitting

The process in cell metabolism by which carbohydrates and sugars, especially glucose, are broken down, producing ATP and pyruvic acid and two "high energy" electron carrying molecules of NADH.

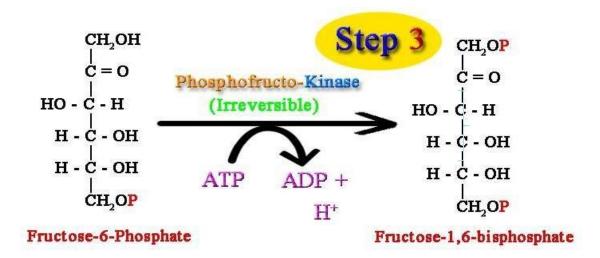

Glucose = $(C_6H_{12}O_6)$

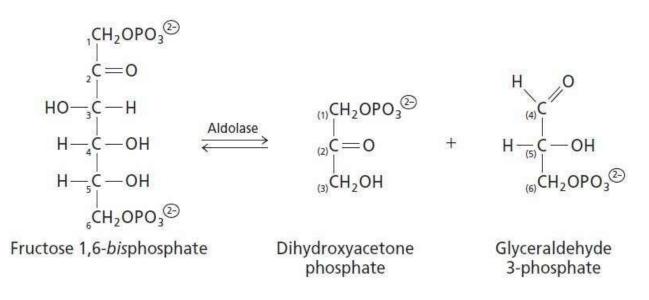
10 Steps involves in Glycolysis



Step 1

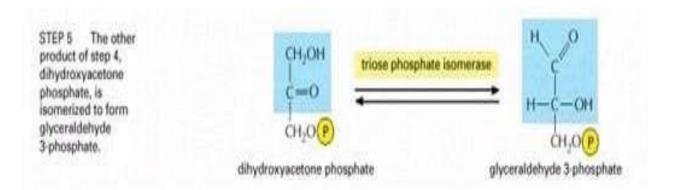
• The enzyme hexokinase phosphorylates (adds a phosphate group to) glucose in the cell's cytoplasm.


• The enzyme phosphoglucoisomerase converts glucose6phosphate into its isomer fructose 6-phosphate.

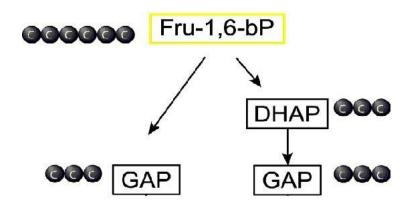

Fructose-6-phosphate

Step 3

• The enzyme phosphofructokinase uses another ATP molecule to transfer a phosphate group to fructose 6-phosphate to form fructose 1, 6-bisphosphate.



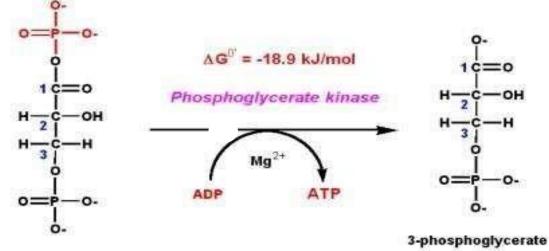
• The enzyme aldolase splits fructose 1, 6-bisphosphate into two sugars that are isomers of each other. These two sugars are dihydroxyacetone phosphate and glyceraldehyde phosphate.


Step 5

- The enzyme triose phosphate isomerase rapidly interconverts the molecules dihydroxyacetone phosphate and glyceraldehyde phosphate.
- Glyceraldehyde phosphate is removed / used in next step of Glycolysis.

• Net result for steps 4 and 5:

Fructose 1, 6-bisphosphate↔ 2 molecules of Glyceraldehyde phosphate (C₃H₅O₃P₁)

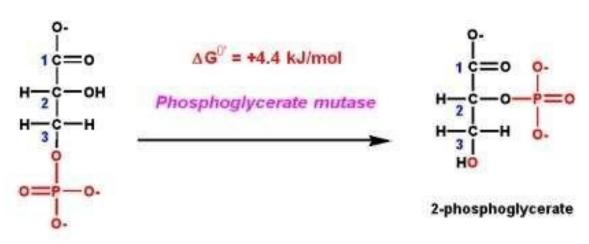


Step 6

- enzyme triose phosphate dehydrogenase
- enzyme transfers a hydrogen (H⁻) from glyceraldehyde phosphate to (NAD⁺) to form NADH.
- Triose phosphate dehydrogenase + 2 H- + 2 NAD+ \rightarrow 2 NADH + 2 H+
- Next triose phosphate dehydrogenase adds a phosphate (P) from the cytosol to the oxidized glyceraldehyde phosphate to form
- 1, 3-bisphosphoglycerate.

TPD+ 2P + 2 glyceraldehyde phosphate → 2 molecules of 1,3bisphosphoglycerate

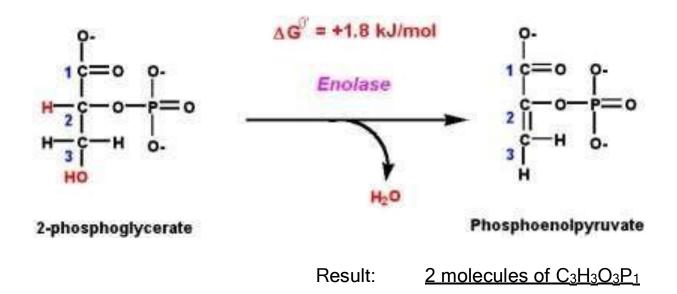
- The enzyme phosphoglycerokinase transfers a P from 1,3-bisphosphoglycerate to a molecule of ADP to form ATP
- This happen for each molecule of 1,3-biphosphoglycerate



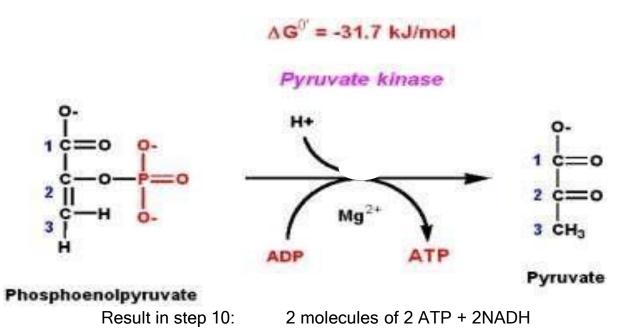

```
1,3-bisphosphoglycerate
```

Result in step 6: \implies 2 molecules of 3-phosphoglycerate (C₃H₅O₄P₁) + 2 ATP

Step 8


 The enzyme phosphoglyceromutase relocates the P from 3phosphoglycerate from the 3rd carbon to the 2nd carbon to form -2phosphoglycerate.

3-phosphoglycerate


2 molecules of 2-Phosphoglycerate (C₃H₅O₄P₁)

 The enzyme enolase removes a molecule of water from 2-phosphoglycerate to form phosphoenolpyruvic acid (PEP).

Step 10

 The enzyme pyruvate kinase transfers a P from PEP to ADP to form pyruvic acid and ATP

Energy Production of Glycolysis

	ATPproduced	ATP utilized	Net energy
In absence of oxygen (anaerobic glycolysis)	4ATP (Substrate level phosphorylation) 2ATP from 1,3 DPG. 2ATP from phosphoenol pyruvate	2ATP From glucose to glucose -6-p. From fructose -6-p to fructose 1,6 p.	2ATP
In presence of oxygen (aerobic glycolysis)	4ATP (substrate level phosphorylation) 2ATP from 1,3 BPG. 2ATP from phosphoenol pyruvate.	2ATP -From glucose to glucose -6-p. From fructose -6-p to fructose 1,6 p.	6ATP Or 8ATP
	4 +ATP or 6ATP)from oxidation of 2 NADH + H in mitochondria.(

