Biosynthesis of fatty acids

DR. Bariaa Ali Maki

- ✓ Introduction
- ✓ Types
- ✓ Functions
- ✓ Biosynthesis
- ✓ Regulation

Introduction

- Building block of lipids
- <u>C,H,O</u> Element present
- High amount energy other then carbohydrates and proteins
- Fatty acid is a carboxylic acid with a long chain hydrocarbon side groups.

- Fatty acid are bind or attach with different group of biomolecule & make complex molecule such as <u>Glycolipids</u>, <u>Phospholipids</u>, <u>Sterols</u>.
- Simple form is <u>Triglycerols</u>.
- Chemically diverse group.
- Common feature is <u>insolubility</u> in water

Types

Based on Carbon bond-

- 1) saturated
- 2) unsaturated

Based on Requirement-

- 1) Essential
- 2) Non essential

Length of chain-

- 1) SCFA
- 2) MCFA
- 3) LCFA
- 4) VLCFA

Localization

Biosynthesis

- In 1945 <u>David Rittenberg</u> and <u>Konrad Bloch</u> demonstrated through isotopic labelling techniques
- In 1950 <u>Sahil Wakil</u> discovered a requirement for bio carbonate in fatty acid biosynthesis and malonyl-CoA was shown to be an intermediate

- In vertebrates its happen into cytosol but in plant and bacteria its occur into <u>chloroplast</u>.
- The pathway of biosynthesis is not exactly reverse as β oxidation.
- Fatty acid breakdown and biosynthesis occur into different compartments of cells, catalysed by different pathways & catalysed by different enzymes

Enzymes & co factors

<u>Two main enzyms-</u>

- ✓ 1)acetyl CoA carboxylase
- ✓ 2)fatty acid synthase

≻<u>Co factors-</u>

✓ 1)Biotin
✓ 2)NADH
✓ 3)Mg⁺

Acetyl CoA carboxylase

Activation

- ✓ Fatty acid synthesis starts with the formation of acetyl ACP and malonyl ACP.
- Acetyl transacylase and malonyl transacylase catalyze these reactions.
- ✓ Acetyl CoA + ACP e acetyl ACP + CoA Malonyl CoA + ACP e malonyl ACP + CoA

Dehydration Reaction-

D-3-hydroxybutyryl ACP is dehydrated to form crotonyl ACP (trans-22-enoyl ACP).

Enzyme: 3-hydroxyacyl ACP dehydratase

Reduction Reaction-

The final step in the cycle reduces crotonyl ACP to **butyryl** ACP.

NADPH is reductant.

Enzyme - *enoyl ACP reductase*.

This is the end of first elongation cycle (first round).

In the second round butyryl ACP condenses with malonyl ACP to form a C_6 - β -ketoacyl ACP.

Reduction, dehydration, and a second reduction convert the C_6 - β ketoacyl ACP into a C_6 acyl ACP, which is ready for a third round of elongation.

Termination

- Rounds of synthesis continue until a C₁₆ palmitoyl group is formed
- Palmitoyl-ACP is hydrolyzed by a thioesterase

Net Production

Net reaction-

8 acetyl-CoA + 14 NADPH + 7 ATP → palmitate + 14 NADP⁺ + 8 CoA + 7 ADP + 7 P_i

Over all <u>Net Reaction-</u>

acetyl-CoA + 7 malonyl-CoA + 14 NADPH → palmitate + 7 CO₂ + 14 NADP⁺ + 8 CoA

Regulation

Acetyl CoA carboxylase- rate limiting step

<u>In vertebrate</u>

- ✓ Feedback inhibitorpalmitate
- ✓ Allosteric activator- citrate
- ✓ Covalent modificationglucagon & epinephrine

<u>In plants</u>

- ✓ Not citrate
- 🗸 Not Hormonal
- ✓ рН
- ✓ [Mg+]
- ✓ At gene level

Difference

Difference	Biosynthesis	oxidation
Location	Chloroplast	Peroxisome
Carrier	Acyl carrier protien	СоА
Isomer	D	L
Activation of Co ₂	Require	Not
Carbon chain	Add 2 Carbon	Remove 2 Carbon
NADH	Require	Generate
Enzyme	Multi complex	Independent

Functions in Plants

Photosyntthesis- eg.Chlorophyll
Electrone transport chain- eg.ubiquinone
Photoprotection- eg.Caretenoids
Coloration- eg.Pigments
Cellular membrane- eg.Galactolipid
Transporters
Communication

<u>Summery</u>

- Fatty acid biosynthesis in plant occure into chloroplast.
- Not reverse as Oxidation process.
- Four steps- condensation, reduction, dehydration and reduction.
- Regulation is different then animals.
- Important role as a structural and biological functions in plants

Reference

- ✓ 1) Biochemistry- Lehninger
- ✓ 2)Biochemistry & molecular biology of plants-Buchanan

