Glycogen Metabolism

Chapter 21 Opener part 1 Biochemistry, Sixth Edition © 2007 W. H. Freeman and Company

Dr:- Bariaa Ali Maki

Glycogen granules

The important pathways of glucose metabolism. Note that the glycogen degradations pathways end in *-lysis*, while the glycogen synthesis pathways end with *-genesis*.

Glycogen nomenclature

FIGURE 29–13 Glucose monomers are removed from the nonreducing ends of glycogen by the enzyme glycogen phosphorylase, which uses phosphate to split the glycosidic bond, rather than water. The resulting product, glucose-1-phosphate, is subsequently isomerized by phosphoglucomutase to glucose-6-phosphate or dephosphorylated in preparation for transport to other tissues.

Glycogen De-branching Process

Outer glycogen chains (after phosphorylase action) Transferase α-1, 6-glucosidase Available for further phosphorolysis

Glycogenolysis (or glycogen breakdown)

requires 3 major enzymes:

1) GLYCOGEN PHOSPHORYLASE (bond cleavage by phosphorolysis) Glycogen

 (n units)+ Pi <---> Glycogen (n-1) + G-1-P inorginic phosphate Glucose-1-phosphate
2) GLYCOGEN DEBRANCHING ENZYME (Fig. 15-6)
3) PHOSPHOGLUCOMUTASE (Fig. 15-7): G-1-P <---> G-1,6-P <---> G-6-P Glucose-1,6-bisphosphate Glucose-6-phosphate

G-6-P has several fates.

In LIVER, it is hydrolyzed to glucose + P i by GLUCOSE-6-PHOSPHATASE.

ΗÒ

Glycogen Synthesis starts with the activation of glucose-1-P to UDP-glucose:

UDP-glucose

uridine + PP_i

0

Ó

ÒН

Glycogen Synthesis: Elongation & Branching

DURING EXERCISE OR FASTING

Hormonal regulation of Glycogen Metabolism

Hormonal regulation of Glycogen Metabolism

TABLE 21.1 Glycogen-storage diseases

			Glycogen	
Туре	Defective enzyme	Organ affected	in the affected organ	Clinical features
i.	Glucose 6-phosphatase	Liver and kidney	Increased amount;	Massive enlargement of the liver.
Von Gierke	or transport system		normal structure.	Failure to thrive. Severe
disease				hypoglycemia, ketosis, hyperuricemia, hyperlipemia.
Ш	α-1,4-Glucosidase	All organs	Massive increase in	Cardiorespiratory failure
Pompe	(lysosomal)		amount; normal structure.	causes death, usually before
disease				age 2.
III	Amylo-1,6-glucosidase	Muscle and liver	Increased amount;	Like type I, but milder
Cori	(debranching enzyme)		short outer branches.	course.
disease				
IV	Branching enzyme	Liver and spleen	Normal amount; very long	Progressive cirrhosis of the liver.
Andersen	$(\alpha - 1, 4 \longrightarrow \alpha - 1, 6)$		outer branches.	Liver failure causes death,
disease				usually before age 2.
v	Phosphorylase	Muscle	Moderately increased	Limited ability to perform strenuous
McArdle			amount; normal structure.	exercise because of painful
disease				muscle cramps. Otherwise patient is normal and well developed.
VI	Phosphorylase	Liver	Increased amount.	Like type I, but milder
Hers				course.
disease				
VII	Phosphofructokinase	Muscle	Increased amount; normal structure.	Like type V.
VIII	Phosphorylase kinase	Liver	Increased amount; normal structure.	Mild liver enlargement. Mild hypoglycemia.

Note: Types I through VII are inherited as autosomal recessives. Type VIII is sex linked.

Glycogen-engorged lysosome:

Pompe's disease is caused by a deficiency in α -1,4glycosidase in lysosomes.

Although cytoplasmic glycogen levels are normal, polymers of glycogen can not escape from the lysosome.

MRI (³¹P-NMR) studies show high levels of ADP in muscle cells of patients with McArdle's disease.

Subsequently, glycolytic activity slows and ADP accumulates. Creatine phosphate is hydrolyzed during strenuous exercise, yielding a more alkaline environment in muscle cells.

End of Glycogen Metabolism Lecture