

Class: first

Subject: integral Mathematics/Code: UOMU024024

Lecturer: M.Sc. Alaa Khalid Lecture name: numerical integration

> Lecture: 12 2ndterm

Numerical Integration

Trapezoidal Approximation

The Trapezoidal Rule for the value of a definite integral is based on approximating the region between a curve and the x-axis with trapezoids instead of rectangles, as in the figure below. It is not necessary for the subdivision points $x_0, x_1, x_2, \ldots, x_n$ in the figure to be evenly spaced, but the resulting formula is simpler if they are. Therefore, we assume that the length of each subinterval is:

$$\Delta x = \frac{b - a}{n}$$

The area of the trapezoid that lies above the ith subinterval is:

$$A = \frac{\Delta x(y_{i-1} + y_i)}{2}$$

The Trapezoidal Rule

To approximate $\int_a^b f(x)dx$, use:

$$A = \frac{\Delta x}{2} (y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n)$$

Example 1: Use the Trapezoidal Rule with n = 4 to estimate $\int_{1}^{2} x^{2} dx$. Compare the estimate with the exact value.

Class: first

Subject: integral Mathematics/Code: UOMU024024

Lecturer: M.Sc. Alaa Khalid Lecture name: numerical integration

> Lecture: 12 2ndterm

Example 1: Use the Trapezoidal Rule with n = 4 to estimate $\int_{1}^{2} x^{2} dx$. Compare the estimate with the exact value.

Solution:

$$\Delta x = \frac{b-a}{n} = \frac{2-1}{4} = \frac{1}{4}$$

x	$y = x^2$
1	1
5/4	25/16
6/4	36/16
7/4	49/16
2	4

$$A = \frac{\Delta x}{2}(y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n)$$

$$= \frac{1}{8} \left(1 + 2 \left(\frac{25}{16} \right) + 2 \left(\frac{36}{16} \right) + 2 \left(\frac{49}{16} \right) + 4 \right) = \frac{75}{32} = 2.34375$$

The exact value of the integral is:

$$\int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} = 2.33333$$

Class: first

Subject: integral Mathematics/Code: UOMU024024

Lecturer: M.Sc. Alaa Khalid

Lecture name: numerical integration

Lecture: 12 2ndterm

Simpson's Rule: Approximations Using Parabolas

Let's calculate the shaded area beneath a parabola passing through three consecutive points. To simplify our calculations, we first take the case where x_0 = -h, x_1 = 0, and x_2 = h (the figure below), where $h = \Delta x = (b - a) / n$. The area under the parabola will be the same if we shift the y-axis to the left or right. The parabola has an equation of the form:

$$y = Ax^2 + Bx + C$$

As a result, the area under it from x=-h to x=h is:

$$A_p = \int_{-h}^{h} (Ax^2 + Bx + C) dx$$
$$= \frac{Ax^3}{3} + \frac{Bx^2}{2} + Cx \Big]_{-h}^{h}$$
$$= \frac{2Ah^3}{3} + 2Ch = \frac{h}{3}(2Ah^2 + 6C)$$

Also, we have:

$$y_0 = Ah^2 - Bh + C$$

$$y_1 = C$$

$$y_2 = Ah^2 + Bh + C$$

From which, we obtain:

$$C = y_1$$

$$Ah^2 - Bh = y_0 - y_1$$

$$Ah^2 + Bh = y_2 - y_1$$

$$2Ah^2 = y_0 + y_2 - 2y_1$$

Substitute these equations into A_p , we have:

$$A_p = \frac{h}{3}(2Ah^2 + 6C) = \frac{h}{3}(y_0 + y_2 - 2y_1 + 6y_1) = \frac{h}{3}(y_0 + 4y_1 + y_2)$$

Computing the areas under all the parabolas and adding the results gives the approximation:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} (y_0 + 4y_1 + y_2) + \frac{h}{3} (y_2 + 4y_3 + y_4) + \dots + \frac{h}{3} (y_{n-2} + 4y_{n-1} + y_n)$$

$$= \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{n-2} + 4y_{n-1} + y_n)$$

$$S = \frac{1}{6} \left(0 + 4 \left(\frac{5}{16} \right) + 2(5) + 4 \left(\frac{405}{16} \right) + 80 \right) = 32 \frac{1}{12}$$

Email: alaa.khalid.abdalreda@uomus.edu.iq

Class: first

Subject: integral Mathematics/Code: UOMU024024

Lecturer: M.Sc. Alaa Khalid Lecture name: numerical integration

> Lecture: 12 2ndterm

The Simpson's Rule

$$S = \int_{a}^{b} f(x) dx = \frac{\Delta x}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{n-2} + 4y_{n-1} + y_n)$$

The number n is even, and

$$\Delta x = \frac{b - a}{n}$$

Example 3: Use Simpson's rule with n=4 to approximate

$$\int_0^2 5x^4 dx$$

Solution: Partition the period [0, 2] into four subintervals and evaluate $y = 5x^4$ at the partition points.

х	$y = 5x^4$
0	0
1/2	5/16
1	5
3/2	405/16
2	80

Applying Simpson's rule with n=4 and $\Delta x=1/2$,

$$S = \frac{\Delta x}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$$

Email: alaa.khalid.abdalreda@uomus.edu.iq