Physics of atom **Lecture Eigh / Theoretical** Introduction of Nanomaterials First stage Dr. Ahmed Najm Obaid 2025 #### **Introduction to Nanomaterials** Nanomaterials, defined as materials with at least one dimension (x, y, z) in the nanoscale range (1–100 nm), One nanometer is one billionth (10⁻⁹nm) of a metre. ### Nanomaterials are categorized based on their dimensions: - 1. Zero-dimensional (0D): Here, all dimensions (x, y, z) are at nanoscale, i.e., no dimensions are greater than 100 nm. It includes nanospheres and nanoclusters. - 2. One-dimensional (1D): Here, two dimensions (x, y) are at nanoscale and the other is outside the nanoscale. It includes nanofibres, nanotubes, nanorods, and nanowires. - 3. Two-dimensional (2D): Here, one dimension (x) is at nanoscale and the other two are outside the nanoscale. The 2D nanomaterials exhibit platelike shapes. It includes nanofilms, nanolayers and nanocoatings with nanometre thickness. **4.** Three-dimensional (3D): Bulk nanostructured materials, such as nanoporous solids or nanocomposites. ## Synthesis and Characterization - 1. Top-down approaches: (e.g., ball milling) - 2. Bottom-up approaches: (e.g., chemical vapor deposition (CVD)). ## **Graphene (GR)** Fifteen years after the Nobel Prize in Physics was awarded and twenty-one years after the first report on Graphene, global interest in this "wonder material" is still growing. It is a twodimensional (2D) allotropic form of carbon with a hexagonal lattice (honeycomb pattern) structure formed by a single layer of bound carbon atoms with a one-atom thickness of **0.35** nm and distinct chemical, mechanical, electrical, and thermal properties. These properties make it a versatile platform for innovative medical applications, ranging from diagnostics to therapeutics. #### **Abundance** 0.00% Abundance (%): 50.00% High 11 | | | | _ | | | | III B | IV B V B | VI B VII B | VIII B VI | II B VIII B | IB | |-------|------------------------------------|---|--|--------------------------------------|-------------------------------|-------------------------------------|------------------------------------|--|---------------------------------------|---------------------------------|------------------------------|---------------------------| | Draft | | | | | | | 13
III A | 14
IV A | 15
V A | 16
VI A | 17
VII A | 2 0.00%
He
Heer | | | | | | | 2p | 5 0.09%
B**
Boron
3 | 6 0.18%
C**
Carbon | 7 0.20%
N**
Nitrogen | 8 45.68%
O**
Oxygen | 9 0.05%
F**
Fluorine | 10 0.00%
Ne
Neon | | | | 8
VIII B | 9
VIII B | 10
VIII B | 11
I B | 12
II B | 3р | 13 8.14%
Al**
Aluminium
2 | Si** Silicon 4 | 15 0.10%
P**
Phosphorus
0.17 | 16 0.04%
S**
Sulfur
11 | 17 0.02%
Cl**
Chlorine | 18 0.01%
Ar
Argon | | 26 | 6.26%
Fe
Iron
0.40 | 27 0.30%
Co
Cobalt
22 | 28 0.89%
Ni
Nickel
23 | 29 0.68%
Cu
Copper
8 | 30 0.78%
Zn
Zinc
3 | 4р | 31 0.19%
Ga**
Gallium | 32 0.01%
Ge**
Germanium
2,356 | 33 0.02%
As**
Arsenic | 34 0.00%
Se**
Selenium | 35 0.03%
Br**
Bromine | 36 0.00%
Kr
Krypton | | 44 | 9.93E-08% Ru Ruthenium 6,817 | Rh Rhodium 101,000 | 46 6.26E-07% Pd*** Palladium 20,000 | Ag Silver 708 | 48 1.49E-05% Cd Cadmium 5 | 5р | 49 0.00%
In
Indium
550 | 50 0.02%
Sn**
Tin
21 | 51 0.00%
Sb**
Antimony | Te** Tellurium | 53 0.00%
I**
Iodine | 54 0.00%
Xe
Xenon | | 76 | 1.79E-07%
Os
osmium | 77 3.97E-08%
Ir
iridium
23,000 | 78 3.67E-06%
Pt
platinum
51,000 | 79 3.08E-07%
Au
gold
42,000 | 80 6.65E-06%
Hg
mercury | 6р | 81 0.01%
Tl
thallium | 82 0.10%
Pb**
Lead | 83 0.00%
Bi**
bismuth
22 | 84 0.00%
Po**
polonium | 85 0.00%
At**
astatine | 86 0.00%
Rn
radon | #### Graphene | Table 1 | Mechanical properties comparison | | | | | | | |---------------------------|----------------------------------|------------|------------------------------|-----------|--|--|--| | Material | Modulus
(Gpa) | T.S. (GPa) | Density (g/cm ³) | Diameter | | | | | SWCNT/MWCNT | ~ 1,000 | ~ 100-200 | ~0.7-1.7 | ~1/20 nm | | | | | Carbon nanofibers | ~ 500 | 3-7 | 1.8-2.1 | 20-200 nm | | | | | Graphene | ~ 1,000 | ~ 100-400 | ~1.8-2.2 | Platelet | | | | | Glass Fiber | 22 | 3.4 | 2.6 | 5-10 | | | | | High Tensile Steel | 210 | 1.3 | 7.8 | | | | | | Carbon Fiber | 230 | 3.5 | 1.75 | 5-10 | | | | | Aramid Fiber | 60 | 3.6 | 1.44 | 5-10 | | | | | Table 2 | Mechanical properties comparison | | | | | | | |---------------------------|----------------------------------|------------|------------------------------|-----------|--|--|--| | Material | Modulus
(Gpa) | T.S. (GPa) | Density (g/cm ³) | Diameter | | | | | SWCNT/MWCNT | ~ 1,000 | ~ 100-200 | ~0.7-1.7 | ~1/20 nm | | | | | Carbon
nanofibers | ~ 500 | 3-7 | 1.8-2.1 | 20-200 nm | | | | | Graphene | ~ 1,000 | ~ 100-400 | ~1.8-2.2 | Platelet | | | | | Glass Fiber | 22 | 3.4 | 2.6 | 5-10 | | | | | High Tensile Steel | 210 | 1.3 | 7.8 | | | | | | Carbon Fiber | 230 | 3.5 | 1.75 | 5-10 | | | | | Aramid Fiber | 60 | 3.6 | 1.44 | 5-10 | | | | Thermal conductivity of Cu and diamond = 400 and 2000 W / m.K | Table 3 | Physical properties | |-------------------------|---------------------------| | Charge carrier mobility | ~200,000 cm²/ V. sec | | Thermal conductivity | ~ 5000 W / m.K | | Transparency | ~ 97.4 % | | Specific surface area | ~ 2630 m ² / g |