

Physics of atom

Lecture seven / Theoretical

Radioactive Decay Concepts

First stage

Dr. Ahmed Najm Obaid 2025

Introduction to Radioactive Decay

- Radioactive decay also known as nuclear decay or radioactivity is a spontaneous process by which an unstable atomic nucleus loses energy by emitting radiation.
- This process transforms the unstable atom nucleus into a **more stable configuration**, often resulting in the formation of a different **element or isotope**.

Why Does Radioactive Decay Occur?

- Neutron-to-proton ratio: Certain isotopes have too many or too few neutrons relative to protons, making them energetically unstable and more likely to decay.
- **Binding energy per nucleon:** Nuclei with lower binding energy per nucleon are less stable and more likely to decay.
- Quantum tunneling: Even if the nucleus is theoretically stable, quantum mechanics allows for small probabilities of decay.
- The **emitted radiation** can take several **forms or (types)**, including:
- Alpha (α) particles (α-decay): Helium nuclei consisting of 2 protons and 2 neutrons.
- •Beta (β) particles (β -decay): High-energy electrons (β -) or positrons (β +).
- •Gamma (γ) rays (γ -decay): Electromagnetic radiation with very high energy.

Alpha emission (α-decay):

- Occurs because the strong nuclear force is unable hold very large nuclei together (heavy nucleus).
- The **electrical repulsion** between the protons of the nucleus pushes apart and can act over a much larger distance than the strong nuclear force.
- Since the strong nuclear force can only act on particles directly beside each other, the electrical repulsion overpowers the string nuclear force and pushes the nucleons apart.
- α- particles is identical to that of helium nucleus, it contains two protons and two neutrons.
- The general nuclear reaction for α -decay can be written as:

Alpha emission (α-decay) example:

Atomic # decreases by 2

Mass # decreases by 4

Problems

1)Identify the daughter nucleus formed when Plutonium-239 ($^{239}_{94}$ pu) undergoes alpha decay.

$${}_{Z}^{A}X \longrightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$$

$${}_{94}^{239}pu \longrightarrow {}_{92}^{235}Y + {}_{2}^{4}He$$

- 2) Write the balanced nuclear equation for the alpha decay of Thorium-232 $\binom{232}{90}Th$.
- 3) Write the balanced nuclear equation for the alpha decay of Plutonium-244($^{244}_{94}$ pu) .
- 4) Write the balanced nuclear equation for the alpha decay of Radon-222 $\,(^{222}_{\,\,86}Rn)$.
- 5) Identify the daughter nucleus formed when Americium-241 ($^{241}_{95}$ Am) undergoes alpha decay.
- 6) Write the balanced nuclear equation for the alpha decay of Californium-252 $\binom{252}{98}$ Cf).

Beta (β) emission (β-decay)

Beta decay is one process that unstable atoms can use to become more stable. There are **two** types of beta decay, **beta-minus** and **beta-plus**.

1) Beta-minus decay (β - decay): is a type of radioactive decay in which a neutron within an atomic nucleus is transformed into a proton, emitting an electron (the beta –minus particle, e^-) and an antineutrino (\overline{v}_e). This process occurs when a nucleus has an excess of neutrons relative to protons, making it unstable.

$$n \rightarrow p + e^- + \overline{v}_e$$

$$^{14}_{6}C \longrightarrow ^{14}_{7}N + e^- + \overline{v}_e$$

The general nuclear reaction for β decay can be written as:

$${}_{Z}^{A}X_{(parent)} \longrightarrow {}_{Z+1}^{A}Y_{(daughter)} + e^{-} + \overline{v}_{e}$$

Beta (β) emission (β-decay)

2) Beta-plus decay (β^+ decay): is a type of radioactive decay in which a **proton** inside an atomic nucleus is converted into a **neutron**, and in the process, a **positron** (the **antiparticle of an electron, the beta -plus particle,** e^+) and a **neutrino**(v_e) are emitted. Beta-plus decay occurs when a nucleus has too many **protons** relative to **neutrons**.

$$p^+ o n + e^+ + v$$
 $^{22}_{11}Na o ^{22}_{10}Ne + e^+ + v$
The general nuclear reaction for β^+ decay can be written as:

Before decay:

proton (+1 charge).

After decay:

neutron (0 charge) +

positron (+1 charge) +

neutrino (0 charge).

$${}_{Z}^{A}X_{(parent)} \longrightarrow {}_{Z-1}^{A}Y_{(daughter)} + e^{+} + v$$

Key Differences Between Beta-Plus and Beta-Minus Decay

Aspect		Beta-Minus Decay (β ⁻)	Beta-Plus Decay (β ⁺)
1	Particle emitted	Electron (e−)	Positron (<i>e</i> +)
2	Neutrino emitted	Antineutrino (v¯)	neutrino (<i>v</i>)
3	Proton-to-neutron	Converts neutron → proton	Converts proton → neutron
4	Atomic number (Z)	Increases by 1	Decreases by 1
5	Mass number (A)	Remains unchanged	Remains unchanged

Problems

1) Write the complete nuclear reaction for the beta-minus decay of $^{32}_{15}P$?

Sol/

$${}^{A}_{Z}X_{(parent)}
ightharpoonup {}_{Z+1}^{A}Y_{(daughter)} + e^{-} + \overline{v}_{e}$$
 ${}^{32}_{15}P
ightharpoonup {}^{32}_{16}S + e^{-} + \overline{v}_{e}$

- 2) Write the complete nuclear reaction for the beta-minus decay of $^{234}_{90}Th$?
- 3) Write the complete nuclear reaction for the beta-minus decay of $^{60}_{27}Co$?
- 4) Write the complete nuclear reaction for the beta-minus decay of $^{131}_{53}I$?
- 5) Write the complete nuclear reaction for the beta-minus decay of $^{210}_{83}Bi$?

Problems

1) The isotope Fluorine-18 $\binom{18}{9}F$) undergoes beta-plus decay , determine the resulting daughter nucleus?

Sol/

$${}^{A}_{Z}X_{(parent)} \longrightarrow {}^{A}_{Z-1}Y_{(daughter)} + e^{+} + v$$

$${}^{18}_{9}F \longrightarrow {}^{18}_{8}O + e^{+} + v$$

- 2) The isotope Nitrogen-13 $\binom{13}{7}$ N) undergoes beta-plus decay, determine the resulting daughter nucleus.
- 3) The isotope Magnesium-23 $\binom{23}{12}$ Mg undergoes beta-plus decay, determine the resulting daughter nucleus.
- 4) The isotope Phosphorus-30 $\binom{30}{15}P$ undergoes beta-plus decay, determine the resulting daughter nucleus.

Gamma Decay (γ-decay)

After processes like alpha decay, beta decay, or nuclear fission (It is rare), the resulting nucleus may remain in an excited (metastable) state with excess energy. This nucleus transitions to a lower energy state by emitting a gamma photon (γ-ray) (Electromagnetic Radiation). The element remains the same; only the energy state of the nucleus changes.

Thorium
$$-234^* \rightarrow$$
 Thorium $-234 + \gamma$ - ray

the asterisk (*) denotes an excited nucleus.

Summary Table: Gamma, Beta, and Alpha Decay

Aspect	Gamma decay	Bate decay	Alpha decay
Definition	Emission of gamma rays (high-energy photons)	Emission of beta particles (electrons/positrons)	Emission of alpha particles (helium nuclei)
Emitted Particle	Gamma ray (γ) – photon (no mass/charge).	Beta particle (β ⁻ : electron; β ⁺ : positron).	Alpha particle (α) – 4_2He nucleus (2p + 2n).
Change in Z	No change	Increases by 1 (β ⁻) or decreases by 1 (β ⁺)	Decreases by 2
Change in A	No change	No change	Decreases by 4
Penetration Power	Highest (stopped by thick lead/concrete)	Moderate (stopped by aluminum/plastic)	Lowest (stopped by paper/skin)
Common Sources	Excited nuclei (e.g., after α/β decay).	Radioactive isotopes (e.g., Carbon-14, Iodine-131).	Heavy nuclei (e.g., Uranium-238, Radium- 226).
Applications	Medical imaging, sterilization, cancer therapy	Radiocarbon dating, PET scans.	Smoke detectors, static eliminators, research.