

كلية العلـــوم قــســــم علوم الذكاء الاصطناعي

المحاضرة الثامنة

المادة: Discrete Structures

المرحلة: الاولى/ الكورس الثاني

اسم الاستاذ: م.د. رياض حامد سلمان

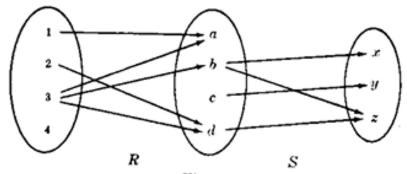
ALMON

Al-Mustaqbal University

College of Science

Composition of relations:

When a relation is formed over stages such that let R be one relation defined from set X to Y, and S be another relation defined from set Y to Z,


then a relation W denoted by R $^\circ$ S is a composite relation, i.e W = R $^\circ$ S ={(x,z) : \exists x \in X for which (x,y) \in R and (y,z) \in S} Composite relation W can also represented by a diagram.

Example:

let
$$A = \{1,2,3,4\}$$

 $B = \{a, b, c, d\}$
 $C = \{x, y, z\}$
And
 $R = \{(1,a),(2,d),(3,a),(3,d),(3,b)\}$
 $S = \{(b,x),(b,z),(c,y),(d,z)\}$
Find $R \circ S$?

Solution:

1) The first way by arrow form

There is an arrow (path) from 2 to d which is followed by an arrow from d to z

2Rd and dSz
$$\Rightarrow$$
 2(R ° S) z
And 3(R ° S)x and 3(R ° S)z

So
$$\mathbf{R} \circ \mathbf{S} = \{(3,x),(3,z),(2,z)\}$$

Al-Mustaqbal University

College of Science

Home work:

Consider the following relations on the set $A = \{1, 2, 3\}$:

$$R = \{(1, 1), (1, 2), (1, 3), (3, 3)\},$$

$$S = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\},$$

$$T = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$$

 \emptyset = empty relation

 $A \times A = universal relation$

- Determine whether or not each of the above relations on A is:
 - reflexive;
 - (2) symmetric;
 - (3) transitive;
 - (4) antisymmetric.
 - (5) Irreflexive
 - (6) compatibility
 - 7) Partial ordered relation

Al-Mustaqbal University College of Science