
Lecture 10: Advanced Use of
Pointers in C++

Asst. Lect. Ali Al-khawaja

Lecture 10

Part 1: Pointers and Arrays

Concept

In C++, the name of an array is actually a constant pointer to its
first element.

Example: Accessing array elements with pointers

int arr[3] = {10, 20, 30};

int* p = arr;

cout << *p << endl; // 10

cout << *(p + 1) << endl; // 20

cout << *(p + 2) << endl; // 30

• arr[i] is equivalent to *(arr + i)

• p[i] is valid when p points to the start of an array

Example: Loop using pointer

Code Example

for (int i = 0; i < 3; i++) {

cout << *(p + i) << endl;

}

Notes

• arr itself is a constant pointer; it cannot be modified (e.g., arr++ is

invalid).

• A separate pointer variable p can be incremented or reassigned.

Part 2: Arrays of Pointers
Concept
An array of pointers is an array where each element holds the
address of another variable or object.

Example: Array of pointers to
integers
1 Array of pointers to integers

int a = 5, b = 10, c = 15;

int* ptrs[3] = {&a, &b, &c};

for (int i = 0; i < 3; i++) {

cout << *ptrs[i] << endl;

}

Each element in ptrs is a pointer to an int.

2 Array of pointers to strings

const char* fruits[] = {"Apple", "Banana", "Cherry"};

for (int i = 0; i < 3; i++) {

cout << fruits[i] << endl;

}

When to Use

Variable-length
data

When managing

variable-length data

(like strings).

Dynamic memory

When dynamically

assigning memory to

array elements.

Function
parameters

For passing arrays of

strings to functions.

Part 3: Pointers to Pointers

Concept

A pointer to a pointer is a variable that stores the address of another pointer.

Syntax

Using double asterisk notation

Example

int x = 50;

int* p = &x;

int** pp = &p;

Accessing Data

Direct Access

cout << x << endl; // 50

Via Pointer

cout << *p << endl; // 50

Via Pointer to Pointer

cout << **pp << endl; // 50

Example: Modifying variable through pointer to pointer

Define Function

void change(int** pp) {

**pp = 100;

}

Setup Variables

int x = 10;

int* p = &x;

Call Function

change(&p);

Check Result

cout << x << endl; // Output: 100

Common Use Cases

• Dynamic allocation of multi-dimensional arrays.

• Modifying a pointer inside a function.

• Advanced data structures (e.g., linked lists, trees).

Comparison Table

Concept Description Example Code

Pointer to Array Array name acts as

pointer

int* p = arr;

Array of Pointers Array that stores

addresses

int* ptrs[3];

Pointer to Pointer Pointer that stores

address of another

ptr

int** pp = &p;

Homework
Assignment 1

Write a C++ program that:

• Declares an array of 3 strings using a pointer array

• Prints each string using pointer notation

Assignment 2

Dynamically allocate a 2D matrix using int** and populate it with

values using loops.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

