
Programming Essentials
(UOMU022023) 

اساسيات البرمجة
2024-2025

Loops
by

Dr  Murtada Dohan
murtada.dohan@uomus.edu.iq 

mailto:murtada.dohan@uomus.edu.iq


Recap



Syntax of if-else Statement

if ( condition ) {
    // code block if condition is true
} else {
    // code block if condition is false
}

1. Boolean variable
Example:

  bool x = true;
   if (x)
        cout << "Here we go!";
   else
        cout << "We cannot make it";

2. Comparison
Example:
  int x = 10, y = 56;
   if (x>=y)
        cout << "X is greater or equal to y";
   else
        cout << "Y is greater than X";



Syntax of switch Statement
 switch (expression) {
 case value1:
     // code block
     break;
 case value2:
     // code block
     break;
     ...
 default:
 }  // code if no case matches

• Key Points:
•  expression must evaluate to an integer or character
•  break exits the switch (if omitted, execution falls through)
•  default is optional (executes if no case matches)



Today, Agenda
•  The Increment and Decrement Operators
•  for Loop
•  while Loop
•  do .. while Loop



The Increment and Decrement Operators
• ++ is the increment operator.
It adds one to a variable.
int val = 2;
val++;

is the same as  val = val + 1;

• ++ can be used before (prefix) or after (postfix) a variable:
int val = 2;
++val; 
val++;



The Increment and Decrement Operators
• -- is the decrement operator.
It subtracts one to a variable.
int val = 2;
Val--;

is the same as  val = val - 1;

• -- can be used before (prefix) or after (postfix) a variable:
int val = 2;
--val; 
Val--;



Prefix vs. Postfix
•++ and -- operators can be used in complex 

statements and expressions 
•  In prefix mode (++val, --val) the operator 

increments or decrements, then returns the value of 
the variable
• In postfix mode (val++, val--) the operator returns 

the value of the variable, then increments or 
decrements



Prefix vs. Postfix - Examples
int num, val = 12;

   cout << val++; 

 

cout << ++val; 

 

num = --val; 

                

num = val--; 
               



Prefix vs. Postfix - Examples
int num, val = 12;

   cout << val++; // displays 12,

                  // val is now 13;

cout << ++val; // sets val to 14,

                  // then displays it

num = --val; // sets val to 13,

                // stores 13 in num

num = val--; // stores 13 in num,
               // sets val to 12



Notes on Increment and Decrement
•Can be used in expressions:
result = num1++ + --num2;

•Must be applied to something that has a location in 
memory. Cannot have:
result = (num1 + num2)++;

•Can be used in relational expressions:
if (++num > limit)

•pre- and post-operations will cause different 
comparisons



Prefix vs. Postfix - Examples
int a = 4;

int b = 7;

b =  ++++a - ++++b;

cout << "a:" << a << endl;

cout << "b:" << b << endl;

• What are the values of a and b?



Prefix vs. Postfix - Examples
int a = 4;

int b = 7;

b =  --++a - ++++a;

cout << "a:" << a << endl;

cout << "b:" << b << endl;

• What are the values of a and b?



Introduction to Loops



The while Loop
• Loop: a control structure that causes a statement or 

statements to repeat
• General format of the while loop:

 while (expression)

      statement;

• statement; can also be a block of
• statements enclosed in { }



The while Loop – How It Works
      while (condition)

     {
     statement;
   }

•  condition is evaluated
• – if true, then statement is executed, and expression is 

evaluated again
• – if false, then the loop is finished and program statements 

following statement execute



How the while Loop in Program Works

int number =  1;
while ( number <= 5 )
{

cout << "Hello\n";
number++;

}



How the while Loop in Program Works

int number =  1;
while ( number <= 5 )
{

cout << "Hello\n";
number++;

}

1. Test This condition



How the while Loop in Program Works

int number =  1;
while ( number <= 5 )
{

cout << "Hello\n";
number++;

}

1. Test This condition



How the while Loop in Program Works

int number =  1;
while ( number <= 5 )
{

cout << "Hello\n";
number++;

}

1. Test This condition

2. It run the code when 
the condition is true



How the while Loop in Program Works

int number =  1;
while ( number <= 5 )
{

cout << "Hello\n";
number++;

}

1. Test This condition

2. It run the code when 
the condition is true

3. After finish the loop contain, it 
will go back to the condition



How the while Loop in Program Works

int number =  1;
while ( number <= 5 )
{

cout << "Hello\n";
number++;

}

1. Test This condition

2. It run the code when 
the condition is true

3. After finish the loop contain, it 
will go back to the condition



The while Loop is a Pretest Loop
• The condition is evaluated before the loop executes. The 

following loop will never execute:

   int number = 6;

   while (number <= 5)

   {

       cout << "Hello\n";

       number++;
   }



Example of an Infinite Loop

int number = 1;
while (number <= 5)
{
    cout << "Hello\n";
}



Using the while Loop for Input Validation
• Input validation is the process of inspecting data that is 

given to the program as input and determining whether it 
is valid.

• The while loop can be used to create input routines that 
reject invalid data, and repeat until valid data is entered.



Using the while Loop for Input Validation
int number;

cout << "Enter a number less than 10: ";

cin >> number;

while (number >= 10)

{

    cout << "Invalid Entry!"

        << "Enter a number less than 10: ";

    cin >> number;

}



Example: while Loop for Input Validation
int number;

cout << "Enter a Positive Number";

cin >> number;

while (number < 0)

{

    cout << "Invalid Entry!"

        << "Enter a number greater than or equal 0: ";

    cin >> number;

}



Example: sum all numbers between 1 and 10
int sum = 0;
int index = 1;
while (index <= 10)
{
sum = sum + index;
index++;

}
cout << "Results:" << sum;



Example: sum all even numbers between 1 
and 100
int sum = 0;
int index = 1;
while (index <= 100)
{
if(index % 2==0)
 sum = sum + index;
index++;

}
cout << "Results:" << sum;



Example: sum number of numbers based on 
user input

int x;// input number from the user
int counter = 1;//control while loop
int results = 0;// sum all the input numbers

int Number_of_time;
cout << "Enter the count of the number:";
cin >> Number_of_time;

while (counter <= Number_of_time)
{
cout << "Enter Number " << counter << " :";
cin >> x;//input the number
results = results + x;// add number to the results
counter++;// increament counter to avoid inifinit loop
}
cout << "Results:" << results;// print the results of the sum 



The do-while Loop
• do-while: a posttest loop – execute the

loop, then test the condition
• General Format:

do

statement;
// or block in { }

while (condition);

• Note that a semicolon is required after(condition)



An Example do-while Loop
int x = 1; 

do

{

cout << x << endl;

} while(x < 0);

Although the test expression is false, this loop will execute
one time because do-while is a posttest loop.



An Example do-while Loop
int sum = 0;
int index = 1;
do
{

sum = sum + index;
index++;

} while (index <= 5);
cout << "Results:" << sum;

• Sum all numbers between 1 and 5
 



Example: write code to read an positive 
number for the user

int x;
do {

cout << "Enter positive value X:";
cin >> x;

} while (x < 0);



The for Loop
• Useful for counter-controlled loop
• General Format:

for(initialization; test; update)

statement; // or block in { }

• No semicolon after the update expression or  after the )



for Loop - Example

int count;
for (count = 1; count <= 5; count++)
 cout << "Hello" << endl;



The for Loop is a Pretest Loop
• The for loop tests its test expression before each iteration, so

it is a pretest loop.
• The following loop will never iterate:

for (int count = 11; count <= 10; count++)
 cout << "Hello" << endl;



for Loop - Modifications
• You can have multiple statements in the 
initialization expression. Separate the statements
with a comma:

int x, y;
for (x = 1, y = 1; x <= 5; x++)
{
cout << x << " plus " << y<< " equals " << (x + y)<< endl;
}

Initialization Expression



for Loop - Modifications
• You can also have multiple statements in the update

expression. Separate the statements with a comma:

int x, y;
for (x = 1, y = 1; x <= 5; x++, y++)
{
 cout << x << " plus " << y<< " equals " << (x + y)<< endl;
}

Update Expression



for Loop - Modifications
• You can omit the initialization expression if it has 

already been done:

int sum = 0, num = 1;

for ( ; num <= 10; num++)
sum += num;



for Loop - Modifications
• You can declare variables in the initialization 

expression:

int sum = 0;
for (int num = 0; num <= 10; num++)
 sum += num;

• The scope of the variable num is the for loop.



Deciding Which Loop to Use
• The while loop is a conditional pretest loop

– Iterates as long as a certain condition exits
– Validating input
– Reading lists of data terminated by a sentinel

• The do-while loop is a conditional posttest loop
– Always iterates at least once
– Repeating a menu

• The for loop is a pretest loop
– Built-in expressions for initializing, testing, and updating
– Situations where the exact number of iterations is known



Nested Loops
• A nested loop is a loop inside the body of another loop
• Inner (inside), outer (outside) loops:

int row, col;
for (row = 1; row <= 3; row++) //outer  

for (col=1; col<=3; col++)//inner
 cout << row * col << endl;



Nested for Loop in Program

Inner Loop

Outer Loop



Nested Loops - Notes
• Inner loop goes through all repetitions for each 

repetition of outer loop

• Inner loop repetitions complete sooner than outer 
loop

• Total number of repetitions for inner loop is product 
of number of repetitions of the two loops.



Breaking Out of a Loop

• Can use break to terminate execution of  a 
loop

• Use sparingly if at all – makes code harder to 
understand and debug

• When used in an inner loop, terminates that 
loop only and goes back to outer loop



The continue Statement
• Can use continue to go to end of loop  and prepare for 

next repetition
–  while, do-while loops: go to test, repeat  loop if test passes
–  for loop: perform update step, then test,  then repeat loop if 

test passes
• Use sparingly – like break, can make program logic 

hard to follow



Example : for-loop
• Print even numbers between 1 and 100

#include <iostream>
using namespace std;
int main()
{ 
for (int i = 0; i <= 100; i = i + 2) {
 cout << i << "\n";
}
}



Let’s try C++
Install Visual Studio and familiarise yourself with its interface.


	Default Section
	Slide 1: Programming Essentials (UOMU022023) 
	Slide 2: Recap
	Slide 3: Syntax of if-else Statement
	Slide 4: Syntax of switch Statement
	Slide 5: Today, Agenda
	Slide 6: The Increment and Decrement Operators
	Slide 7: The Increment and Decrement Operators
	Slide 8: Prefix vs. Postfix
	Slide 9: Prefix vs. Postfix - Examples
	Slide 10: Prefix vs. Postfix - Examples
	Slide 11: Notes on Increment and Decrement
	Slide 12: Prefix vs. Postfix - Examples
	Slide 13: Prefix vs. Postfix - Examples
	Slide 14: Introduction to Loops
	Slide 15: The while Loop
	Slide 16: The while Loop – How It Works
	Slide 17: How the while Loop in Program Works
	Slide 18: How the while Loop in Program Works
	Slide 19: How the while Loop in Program Works
	Slide 20: How the while Loop in Program Works
	Slide 21: How the while Loop in Program Works
	Slide 22: How the while Loop in Program Works
	Slide 23: The while Loop is a Pretest Loop
	Slide 24: Example of an Infinite Loop
	Slide 25: Using the while Loop for Input Validation
	Slide 26: Using the while Loop for Input Validation
	Slide 27: Example: while Loop for Input Validation
	Slide 28: Example: sum all numbers between 1 and 10
	Slide 29: Example: sum all even numbers between 1 and 100
	Slide 30: Example: sum number of numbers based on user input
	Slide 31: The do-while Loop
	Slide 32: An Example do-while Loop
	Slide 33: An Example do-while Loop
	Slide 34: Example: write code to read an positive number for the user
	Slide 35: The for Loop
	Slide 36: for Loop - Example
	Slide 37: The for Loop is a Pretest Loop
	Slide 38: for Loop - Modifications
	Slide 39: for Loop - Modifications
	Slide 40: for Loop - Modifications
	Slide 41: for Loop - Modifications
	Slide 42: Deciding Which Loop to Use
	Slide 43: Nested Loops
	Slide 44: Nested for Loop in Program
	Slide 45: Nested Loops - Notes
	Slide 46: Breaking Out of a Loop
	Slide 47: The continue Statement
	Slide 48: Example : for-loop

	Untitled Section
	Slide 49: Let’s try C++


