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Recap



Syntax of if-else Statement

if ( condition ) {
    // code block if condition is true
} else {
    // code block if condition is false
}

1. Boolean variable
Example:

  bool x = true;
   if (x)
        cout << "Here we go!";
   else
        cout << "We cannot make it";

2. Comparison
Example:
  int x = 10, y = 56;
   if (x>=y)
        cout << "X is greater or equal to y";
   else
        cout << "Y is greater than X";



Syntax of switch Statement
 switch (expression) {
 case value1:
     // code block
     break;
 case value2:
     // code block
     break;
     ...
 default:
 }  // code if no case matches

• Key Points:
•  expression must evaluate to an integer or character
•  break exits the switch (if omitted, execution falls through)
•  default is optional (executes if no case matches)



Today, Agenda
•  The Increment and Decrement Operators
•  for Loop
•  while Loop
•  do .. while Loop



The Increment and Decrement Operators
• ++ is the increment operator.
It adds one to a variable.
int val = 2;
val++;

is the same as  val = val + 1;

• ++ can be used before (prefix) or after (postfix) a variable:
int val = 2;
++val; 
val++;



The Increment and Decrement Operators
• -- is the decrement operator.
It subtracts one to a variable.
int val = 2;
Val--;

is the same as  val = val - 1;

• -- can be used before (prefix) or after (postfix) a variable:
int val = 2;
--val; 
Val--;



Prefix vs. Postfix
•++ and -- operators can be used in complex 

statements and expressions 
•  In prefix mode (++val, --val) the operator 

increments or decrements, then returns the value of 
the variable
• In postfix mode (val++, val--) the operator returns 

the value of the variable, then increments or 
decrements



Prefix vs. Postfix - Examples
int num, val = 12;

   cout << val++; 

 

cout << ++val; 

 

num = --val; 

                

num = val--; 
               



Prefix vs. Postfix - Examples
int num, val = 12;

   cout << val++; // displays 12,

                  // val is now 13;

cout << ++val; // sets val to 14,

                  // then displays it

num = --val; // sets val to 13,

                // stores 13 in num

num = val--; // stores 13 in num,
               // sets val to 12



Notes on Increment and Decrement
•Can be used in expressions:
result = num1++ + --num2;

•Must be applied to something that has a location in 
memory. Cannot have:
result = (num1 + num2)++;

•Can be used in relational expressions:
if (++num > limit)

•pre- and post-operations will cause different 
comparisons



Prefix vs. Postfix - Examples
int a = 4;

int b = 7;

b =  ++++a - ++++b;

cout << "a:" << a << endl;

cout << "b:" << b << endl;

• What are the values of a and b?



Prefix vs. Postfix - Examples
int a = 4;

int b = 7;

b =  --++a - ++++a;

cout << "a:" << a << endl;

cout << "b:" << b << endl;

• What are the values of a and b?



Introduction to Loops



The while Loop
• Loop: a control structure that causes a statement or 

statements to repeat
• General format of the while loop:

 while (expression)

      statement;

• statement; can also be a block of
• statements enclosed in { }



The while Loop – How It Works
      while (condition)

     {
     statement;
   }

•  condition is evaluated
• – if true, then statement is executed, and expression is 

evaluated again
• – if false, then the loop is finished and program statements 

following statement execute



How the while Loop in Program Works

int number =  1;
while ( number <= 5 )
{

cout << "Hello\n";
number++;

}
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How the while Loop in Program Works

int number =  1;
while ( number <= 5 )
{

cout << "Hello\n";
number++;

}

1. Test This condition

2. It run the code when 
the condition is true

3. After finish the loop contain, it 
will go back to the condition



The while Loop is a Pretest Loop
• The condition is evaluated before the loop executes. The 

following loop will never execute:

   int number = 6;

   while (number <= 5)

   {

       cout << "Hello\n";

       number++;
   }



Example of an Infinite Loop

int number = 1;
while (number <= 5)
{
    cout << "Hello\n";
}



Using the while Loop for Input Validation
• Input validation is the process of inspecting data that is 

given to the program as input and determining whether it 
is valid.

• The while loop can be used to create input routines that 
reject invalid data, and repeat until valid data is entered.



Using the while Loop for Input Validation
int number;

cout << "Enter a number less than 10: ";

cin >> number;

while (number >= 10)

{

    cout << "Invalid Entry!"

        << "Enter a number less than 10: ";

    cin >> number;

}



Example: while Loop for Input Validation
int number;

cout << "Enter a Positive Number";

cin >> number;

while (number < 0)

{

    cout << "Invalid Entry!"

        << "Enter a number greater than or equal 0: ";

    cin >> number;

}



Example: sum all numbers between 1 and 10
int sum = 0;
int index = 1;
while (index <= 10)
{
sum = sum + index;
index++;

}
cout << "Results:" << sum;



Example: sum all even numbers between 1 
and 100
int sum = 0;
int index = 1;
while (index <= 100)
{
if(index % 2==0)
 sum = sum + index;
index++;

}
cout << "Results:" << sum;



Example: sum number of numbers based on 
user input

int x;// input number from the user
int counter = 1;//control while loop
int results = 0;// sum all the input numbers

int Number_of_time;
cout << "Enter the count of the number:";
cin >> Number_of_time;

while (counter <= Number_of_time)
{
cout << "Enter Number " << counter << " :";
cin >> x;//input the number
results = results + x;// add number to the results
counter++;// increament counter to avoid inifinit loop
}
cout << "Results:" << results;// print the results of the sum 



The do-while Loop
• do-while: a posttest loop – execute the

loop, then test the condition
• General Format:

do

statement;
// or block in { }

while (condition);

• Note that a semicolon is required after(condition)



An Example do-while Loop
int x = 1; 

do

{

cout << x << endl;

} while(x < 0);

Although the test expression is false, this loop will execute
one time because do-while is a posttest loop.



An Example do-while Loop
int sum = 0;
int index = 1;
do
{

sum = sum + index;
index++;

} while (index <= 5);
cout << "Results:" << sum;

• Sum all numbers between 1 and 5
 



Example: write code to read an positive 
number for the user

int x;
do {

cout << "Enter positive value X:";
cin >> x;

} while (x < 0);



The for Loop
• Useful for counter-controlled loop
• General Format:

for(initialization; test; update)

statement; // or block in { }

• No semicolon after the update expression or  after the )



for Loop - Example

int count;
for (count = 1; count <= 5; count++)
 cout << "Hello" << endl;



The for Loop is a Pretest Loop
• The for loop tests its test expression before each iteration, so

it is a pretest loop.
• The following loop will never iterate:

for (int count = 11; count <= 10; count++)
 cout << "Hello" << endl;



for Loop - Modifications
• You can have multiple statements in the 
initialization expression. Separate the statements
with a comma:

int x, y;
for (x = 1, y = 1; x <= 5; x++)
{
cout << x << " plus " << y<< " equals " << (x + y)<< endl;
}

Initialization Expression



for Loop - Modifications
• You can also have multiple statements in the update

expression. Separate the statements with a comma:

int x, y;
for (x = 1, y = 1; x <= 5; x++, y++)
{
 cout << x << " plus " << y<< " equals " << (x + y)<< endl;
}

Update Expression



for Loop - Modifications
• You can omit the initialization expression if it has 

already been done:

int sum = 0, num = 1;

for ( ; num <= 10; num++)
sum += num;



for Loop - Modifications
• You can declare variables in the initialization 

expression:

int sum = 0;
for (int num = 0; num <= 10; num++)
 sum += num;

• The scope of the variable num is the for loop.



Deciding Which Loop to Use
• The while loop is a conditional pretest loop

– Iterates as long as a certain condition exits
– Validating input
– Reading lists of data terminated by a sentinel

• The do-while loop is a conditional posttest loop
– Always iterates at least once
– Repeating a menu

• The for loop is a pretest loop
– Built-in expressions for initializing, testing, and updating
– Situations where the exact number of iterations is known



Nested Loops
• A nested loop is a loop inside the body of another loop
• Inner (inside), outer (outside) loops:

int row, col;
for (row = 1; row <= 3; row++) //outer  

for (col=1; col<=3; col++)//inner
 cout << row * col << endl;



Nested for Loop in Program

Inner Loop

Outer Loop



Nested Loops - Notes
• Inner loop goes through all repetitions for each 

repetition of outer loop

• Inner loop repetitions complete sooner than outer 
loop

• Total number of repetitions for inner loop is product 
of number of repetitions of the two loops.



Breaking Out of a Loop

• Can use break to terminate execution of  a 
loop

• Use sparingly if at all – makes code harder to 
understand and debug

• When used in an inner loop, terminates that 
loop only and goes back to outer loop



The continue Statement
• Can use continue to go to end of loop  and prepare for 

next repetition
–  while, do-while loops: go to test, repeat  loop if test passes
–  for loop: perform update step, then test,  then repeat loop if 

test passes
• Use sparingly – like break, can make program logic 

hard to follow



Example : for-loop
• Print even numbers between 1 and 100

#include <iostream>
using namespace std;
int main()
{ 
for (int i = 0; i <= 100; i = i + 2) {
 cout << i << "\n";
}
}



Let’s try C++
Install Visual Studio and familiarise yourself with its interface.
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