Programming Essentials

(UOMU022023)

ol il Ll
2025-2024

Loops

b
Dr Murtada
murtada.dohan(@uom

mailto:murtada.dohan@uomus.edu.iq

(€7)/Syntax of if-else Statement

// code blgck if condition is true

1. Boolean variable

Example:
bool x = true;
if (x)
cout << "Here we go!";
else

cout << "We cannot make it";

}else {

// code block if condition is false

}

2. Comparison
Example:

int x = 10, y = 56;
if (x>=y)
cout << "X is greater or equal to y";

else
cout << "Y is greater than X";

switch (expression) {
case valuel:
// code block
break;
case value2:
// code block
break;

defaﬁii:
} // code if no case matches

 Key Points:
* expression must evaluate to an integer or character

* break exits the switch (if omitted, execution falls through)
 default is optional (executes if no case matches)

L\
| JIE\-
N === B
z \ YW
) D> /
A\ U J
% d >
2 2010/
i,
/P‘y,)}

* The Increment and Decrement Operators
* for Loop

* while Loop

* do.. while Loop

% P
< 2010,

The Increment and Decrement Operators

* ++ is the increment operator.
It adds one to a variable.

int val = 2;

val++;

IS the same as val = val + 1;

* ++ can be used before (prefix) or after (postfix) a variable:
int val = 2;
++val;

val++;

¥’The Increment and Decrement Operators

* -- IS the decrement operator.

It subtracts one to a variable.
int val = 2;

Val——;

Is the same as val = val - 1;
» -- can be used before (prefix) or after (postfix) a variable:
int val = 2;
——val;
Val——;

ﬂ) |
c /
& /
) :
¢, ! 7
%,
) %
s

Prefix vs. Postfix

*++ and -- operators can be used In complex
statements and expressions
* In prefix mode (++val, --val) the operator

increments or decrements, then returns the value of
the variable

*In postfix mode (val++, val--) the operator returns
the value of the variable, then increments® or
decrements

£
B
% v

D
i

Y Prefix vs. Postfix - Examples

int num, val = 12;
cout << val++;

cout << ++val;

num --val;

num val—-—;

| [ot
o=\- 1=
il > s

;E ;I%I' 4
1 G\ A
&,

Y Prefix vs. Postfix - Examples

int num, val = 12;
cout << val++; // displays 12,
// val is now 13;
cout << ++val; // sets val to 14,
// then displays it

num = —-val; // sets val to 13,
// stores 13 in num
num = val--; // stores 13 in num,

// sets val to 12

» e ‘ :

-
U
K
5 \N,
201
>

Y Notes on Increment and Decrement

* Can be used in expressions:

result = numl++ + —--num2;

* Must be applied to something that has a location in
memory. Cannot have:

result = (numl + num2)++;

» Can be used in relational expressions:

if (++num > limit)

* pre- and post-operations will cause different
comparisons

H—
4
z |
a
3
% \/ &
s 2010:
< 2010/
Q
'9‘5\/)}

Prefix vs. Postfix - Examples
int a = 4;

int b = 7;

b = ++++a - ++++b;

cout << "a:" << a << endl;
cout << "b:" << b << endl;

* \What are the values of aand b?

| s;f
i paw
B 5 4
: \ W/ 1
5 (&)
% q
W/

UV

A\ %
2 2010/
e,
>

Prefix vs. Postfix - Examples

int a = 4;

int b = 7;

b = -—++a - ++++a;

cout << "a:" << a << endl;
cout << "b:" << b << endl;

* \What are the values of a and b?

Introduction to Loo

¥ The while Loop

 Loop: a control structure that causes a statement or
statements to repeat

* General format of the while loop:

while (expression)
statement;

. statement: Can also be a block of
e statements enclosed in { }

¥’ The while Loop — How It Works

while (condition)

{

statement;

}

e condition IS evaluated

» — if true, then statement is executed, and expression is
evaluated again

» —if false, then the loop is finished and program statem
following statement execute

I ,-_-: J =

iz L]:_. =

Hr

\% o

How the while Loop in Program Works

int number =

while CMD
{
cout << "Hello\n";
number++;

L\
2 2010
e,
>

How the while Loop in Program Works

1. Test This condition

int number =

while (51)
{
cout << "Hello\n";
number++;

L\
2 2010
e,
>

How the while Loop in Program Works

1. Test This condition

int number =

while (51)
{
cout << "Hello\n";
number++;

L\
2 2010
e,
>

How the while Loop in Program Works

1. Test This condition

int number =

while (] number <= 5})
cout << "Hello\n"; 2. It run the code when
number++; the condition is true

while (] number <= 5})
cout << "Hello\n"; 2. It run the code when
number++; the condition is true

3. After finish the loop contain, it

will go back to the condition

cout << "Hello\n"; 2. It run the code when
number++; the condition is true

3. After finish the loop contain, it
will go back to the condition

» el B

A o< M
7 V q

Y The while Loop is a Pretest Loop

* The condition is evaluated before the loop executes. The
following loop will never execute:

int number = 6;

while (number <= 5)

{
cout << "Hello\n";
number++;

¥ Example of an Infinite Loop

int number = 1;
while (number <= 5)

i

cout << "Hello\n";

S — =

z ZA & IX

z

G d

FA
2 ~ &
\7 e cunad 48
2 201

Using the while Loop for Input Validation

D o/
& _
% y’);)

» Input validation is the process of inspecting data that is
given to the program as input and determining whether it
is valid.

* The while loop can be used to create input routines that
reject invalid data, and repeat until valid data is entered.

TEn
I EUES
Bl A G X
G A /
: v J

> \ A/
2 2010
e,
>

Using the while Loop for Input Validation

int number;
cout << "Enter a number less than 10: ";
cin >> number;
while (number >= 10)
{
cout << "Invalid Entry!"
<< "Enter a number less than 10: ";
cin >> number;

H—
4
z |
a
3
% \/ &
s 2010:
< 2010/
Q
'9‘5\/)}

Example: while Loop for Input Validation

int number;
cout << "Enter a Positive Number";
cin >> number;
while Cnumber < 0)
{
cout << "Invalid Entry!"
<< "Enter a number greater than or equal 0: ";

cin >> number;

wITTET
Fold [JEV\ N5
=
[= r
, 3 .
z | L&) i
A\ &5 /)
7. 9

Y’ Example: sum all numbers between 1 and 10

int sum = 0O;

int index = 1;
while (index <= 10)
{

sum = sum + 1ndex;
index++;

¥

cout << "Results:" << sum;

& Example: sum all even numbers between 1
and 100

int sum = 0O;
int index = 1;
while (index <= 100)

{
if(index % 2==0)
sum = sum + 1ndex;
index++;

¥

cout << "Results:" << sum;

¢/)Example: sum number of numbers based on
~user input

int x;// 1nput number from the user
int counter = 1: //control while loop
int results = 0; // sum all the input numbers

int Number_of_time;
cout << "Enter the count of the number:";
cin >> Number_of_time;

while (counter <= Number_of_time)

{

cout << "Enter Number " << counter << " :".
cin >> x;//input the number

results = results + x;// add number to the results
counter++;// increament counter to avoid inifinit loop

}

cout << "Results:" << results;// print the results of the

P i\ "
, e EE]
AU AN I [
4 D /
V(O'V/b(% 2010
'Sy
I, S

» do-while:a posttestloop — execute the
loop, then test the condition

» General Format:

do
statement;

// or block in { }

while (condition);

= Note that a semicolon is required after (condition)

An Example do-while Loop

int x = 1;
do

{
cout << x << endl;

} while(x < 0);

Although the test expression is false, this loop will execute
one time because do-while is a posttest loop.

An Example do-while Loop

int sum = 0;

int index = 1;

do
sum = sum + index;
index++;

} while (index <= 5);
cout << "Results:" << sum;

* Sum all numbers between 1 and 5

| R

'@ Example: write code to read an positive
number for the user

int Xx;

do {
cout << "Enter positive value X:";
cin >> X;

} while (x < 0);

) The for Loop

O,
3 ;
< < 0
Q
RSy Py

» Useful for counter-controlled loop
* General Format:

for(initialization; test; update)

statement; // or block in { }

* No semicolon after the update expression or after

£
B
% v

2 \ 5
2 2010/
e,
>

L& DX
.
i N

for Loop - Example

int count;
for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

) The for Loop is a Pretest Loop

= The for loop tests its test expression before each iteration, so
it is a pretest loop.

» The following loop will never iterate:

for (int count = 11; count <= 10; count++)
cout << "Hello" << endl;

for Loop - Modifications

= You can have multiple statements in the
initialization expression. Separate the statements
with a comma:

Initialization Expression

int x, v;
for (X = I, VvV = TT,‘/X<= 5: x++)
{

cout << x << " plus " << y<< " equals " << (x + vy

¥

for Loop - Modifications

= You can also have multiple statements in the update
expression. Separate the statements with a comma:

Update Expression

int x, vy; /
for (x =1, y = 1; x <= 5; |x++, y++j

i
}

cout << x << " plus " << y<< " equals " << (x + y)<< endl;

| IE
N = p
. y, L |
z | L& i
: (%Y |

P 9
A\ ~ /K

Y for Loop - Modifications

* Youcanomitthe initialization expression ifithas
already been done:

int sum = 0, num = 1;
for (; num <= 10; num++)
sum += num;

&@/for Loop - Modifications

* You can declarevariablesinthe initialization
expression:

int sum = 0;
for (int num = 0; num <= 10; num++)
sum += num;

* The scope of the variable num is the for loop.

2 ﬂJ
z
z
a
% <
% &7

\;
Yy /4

¥Deciding Which Loop to Use

 The while loopisa conditional pretest loop
— Iterates as long as a certain condition exits

— Validating input
— Reading lists of data terminated by a sentinel

 The do-while loopisaconditional posttest loop
— Always iterates at least once

— Repeating a menu

 The for loopis a pretest loop
— Built-in expressions for initializing, testing, and updating
— Situations where the exact number of iterations is known

Nested Loops

* A nestedloopis aloop inside the body of another loop
* Inner (inside), outer (outside) loops:

int row, col;

for (row = 1; row <= 3; row++) //outer
for (col=1l; col<=3; col++)//inner
cout << row * col << endl;

Nested for Loop in Program

26 // Determine each student's average score.
27 for (int student = 1; student <= numStudents; student++)

20 {

29 total = 0; // Initialize the accumulator.
30 [for (int test = 1; test <= numlests; test++)
31 {

32 double score;

3 cout << "Enter score " << test << " for ";
34 cout << "student " << student << ": ";

32 cin >> score;

36 total += score;

37 } Inner Loop
38 average = total / numlests,;
39 cout << "The average score for student " << student;
' cout << " is " << average << ".\n\n";

41 } Outer Loop

@ /Nested Loops - Notes

* Inner loop goes through all repetitions for each
repetition of outer loop

* Inner loop repetitions complete sooner than outer
loop

» Total number of repetitions for inner loop is p
of number of repetitions of the two loops.

;fafi’Breaking Out of a Loop

e Can use break to terminate execution of a
loop

» Use sparingly if at all — makes code harder to
understand and debug

* \When used in an inner loop, terminates th
loop only and goes back to outer loop

©@/The continue Statement

* Can use continue to go to end of loop and prepare for
next repetition
— while, do-while loops: go to test, repeat loop if test passes
— for loop: perform update step, then test, then repeat loop if
test passes
* Use sparingly — like break, can make program logic
hard to follow

¥’ Example : for-loop

* Print even hnumbers between 1 and 100

#include <iostream>
using namespace std;
int main()

{
for (int i = 0; i <=100; i =1 + 2) {
cout << i << "\n";

¥
¥

Install VVisual Studio and famili

	Default Section
	Slide 1: Programming Essentials (UOMU022023)
	Slide 2: Recap
	Slide 3: Syntax of if-else Statement
	Slide 4: Syntax of switch Statement
	Slide 5: Today, Agenda
	Slide 6: The Increment and Decrement Operators
	Slide 7: The Increment and Decrement Operators
	Slide 8: Prefix vs. Postfix
	Slide 9: Prefix vs. Postfix - Examples
	Slide 10: Prefix vs. Postfix - Examples
	Slide 11: Notes on Increment and Decrement
	Slide 12: Prefix vs. Postfix - Examples
	Slide 13: Prefix vs. Postfix - Examples
	Slide 14: Introduction to Loops
	Slide 15: The while Loop
	Slide 16: The while Loop – How It Works
	Slide 17: How the while Loop in Program Works
	Slide 18: How the while Loop in Program Works
	Slide 19: How the while Loop in Program Works
	Slide 20: How the while Loop in Program Works
	Slide 21: How the while Loop in Program Works
	Slide 22: How the while Loop in Program Works
	Slide 23: The while Loop is a Pretest Loop
	Slide 24: Example of an Infinite Loop
	Slide 25: Using the while Loop for Input Validation
	Slide 26: Using the while Loop for Input Validation
	Slide 27: Example: while Loop for Input Validation
	Slide 28: Example: sum all numbers between 1 and 10
	Slide 29: Example: sum all even numbers between 1 and 100
	Slide 30: Example: sum number of numbers based on user input
	Slide 31: The do-while Loop
	Slide 32: An Example do-while Loop
	Slide 33: An Example do-while Loop
	Slide 34: Example: write code to read an positive number for the user
	Slide 35: The for Loop
	Slide 36: for Loop - Example
	Slide 37: The for Loop is a Pretest Loop
	Slide 38: for Loop - Modifications
	Slide 39: for Loop - Modifications
	Slide 40: for Loop - Modifications
	Slide 41: for Loop - Modifications
	Slide 42: Deciding Which Loop to Use
	Slide 43: Nested Loops
	Slide 44: Nested for Loop in Program
	Slide 45: Nested Loops - Notes
	Slide 46: Breaking Out of a Loop
	Slide 47: The continue Statement
	Slide 48: Example : for-loop

	Untitled Section
	Slide 49: Let’s try C++

