AL-Mustaqbal University College of Engineering and Technology Communication Technical Eng. Dep. Mid Exam 2024-2025 2nd Semester TOTAL STATE OF THE PROPERTY OF

Subject: Digital Logic

Module Code: UOMU028021

Time Allowed: 1 Hour Date: 30/04/2025 Total Marks: 10

Important Note

Class: First Year

Attempt All Questions.

- Q1. Convert the Decimal number 214_{10} to Hexadecimal. Then, convert the resulting Hexadecimal number to Binary?
- Q2. Solve for \mathbf{x} in the equation: $34.562_8 = \mathbf{x_2}$?
- Q3. Convert the Binary number 101.1011₂ to Decimal number?
- Q4. Multiple-Choice and Explanation
 - (a) Choose the correct answers for the following multiple-choice questions:
 - 1. In the Hexadecimal number system (base-16), the digits used are:
 - A. 0-1. B. 0-7. C. 0-9. D. 0-15.
 - 2. When counting in the binary system (base-2), what is the number that comes immediately after 11001₂?
 - A. 11010₂ B. 11011₂ C. 11100₂ D. 11101₂
 - 3. What does the value of a number in any base system represent?
 - **A.** The product of its digits **B.** The largest digit in the number **C.** The count of its digits **D.** The sum of each digit multiplied by its positional weight
 - 4. What is the largest decimal number that can be represented using 5 bits in binary?
 - A. 15. B. 31. C. 63. D. 127.
 - (b) Subtract 9 5 using 2's complement using 4 binary digits?

Good Luck

Examiner: Dr. Mohammed Fadhil Head of Dept.: Prof. Dr. Haider Jabbar Abd

AL-Mustaqbal University
College of Engineering and Technology
Communication Technical Eng. Dep.
Mid Exam 2024-2025 2nd Semester

Outside of market and a sub-

Subject: Digital Logic

Module Code: UOMU028021

Time Allowed: 1 Hour Date: 30/04/2025 Total Marks: 10

Important Note

Class: First Year

Attempt All Questions.

- Q1. Convert the Decimal number **3117**₁₀ to Hexadecimal. Then, convert the resulting Hexadecimal number to Binary?
- Q2. Solve for \mathbf{x} in the equation: $174.3_8 = \mathbf{x}_{10}$?
- Q3. Convert the Decimal number 45.625_{10} to Binary number?
- Q4. Multiple-Choice and Explanation
 - (a) Choose the correct answers for the following multiple-choice questions:
 - 1. In the decimal number system (base-10), the digits used are:
 - A. 0-7. B. 0-9. C. 0-15. D. 0-1.
 - 2. When counting in the binary system (base-2), what is the number that comes immediately after 111₂?
 - A. 1000₂ B. 0000₂ C. 1110₂ D. 1001₂
 - 3. What does the value of a number in any base system represent?
 - **A.** The product of its digits **B.** The largest digit in the number **C.** The count of its digits **D.** The sum of each digit multiplied by its positional weight
 - 4. What is the largest decimal number that can be represented using 8 bits in binary?
 - A. 128. B. 127. C. 255. D. 256.
 - (b) Subtract 7 4 using 1's complement and 2's complement and explain the key differences.

Good Luck

Examiner: Dr. Mohammed Fadhil Head of Dept.: Prof. Dr. Haider Jabbar Abd

AL-Mustaqbal University
College of Engineering and Technology
Communication Technical Eng. Dep.
Mid Exam 2024-2025 2nd Semester

A COLUMN TO THE COLUMN TO THE

Subject: Digital Logic

Module Code: UOMU028021

Time Allowed: 1 Hour Date: 30/04/2025 Total Marks: 10

Important Note

Class: First Year

Attempt All Questions.

- Q1. Convert the Decimal number **423**₁₀ to Hexadecimal. Then, convert the resulting Hexadecimal number to Binary?
- Q2. Solve for \mathbf{x} in the equation: $372.3_8 = \mathbf{x}_{10}$?
- Q3. Convert the Decimal number **33.625**₁₀ to Binary number?
- Q4. Multiple-Choice and Explanation
 - (a) Choose the correct answers for the following multiple-choice questions:
 - 1. In the octal number system (base-8), the digits used are:
 - A. 0-1. B. 0-7. C. 0-9. D. 0-15.
 - 2. When counting in the binary system (base-2), what is the number that comes immediately after 1111₂?
 - A. 10000₂ B. 01000₂ C. 11110₂ D. 10110₂
 - 3. What does the value of a number in any base system represent?
 - **A.** The product of its digits **B.** The largest digit in the number **C.** The count of its digits **D.** The sum of each digit multiplied by its positional weight
 - 4. What is the largest decimal number that can be represented using 3 bits in binary?
 - A. 4. B. 5. C. 6. D. 7.
 - (b) Subtract 5 3 using 1's complement and 2's complement and explain the key differences.

Good Luck

Examiner: Dr. Mohammed Fadhil Head of Dept.: Prof. Dr. Haider Jabbar Abd

_	uiz-2 Student Name:
Date: 17/5/2024 Digital Logic- UOMU028021: First Year Lecturer: Dr. Mohammed Fadhil	
	Question 1: (3 points) True/False:
(a)	In octal-to-binary conversion, each octal digit maps directly to a 4-bit binary group.
(b)	The 2's complement method simplifies binary subtraction by converting it into addition.
(c)	The hexadecimal number system uses base-8 and is commonly employed in memory addressing.
	Question 2: (4 points) Convert the hexadecimal number A $_{3_{16}}$ to its 8-bit binary equivalent.
	Question 3: (3 points) Represent the decimal number -5 in 8-bit 1's complement form.