A source of the source of the

Al-Mustaqbal University Medical Instrumentation Techniques Engineering Department

المرحله: الاولى اسم الماده: تقنيات رقمية اسم المحاضر: مدرس جابر حميد مجيد

For Second class

by Jaber Hamed

ALACATION OF THE PROPERTY OF T

Al-Mustaqbal University Medical Instrumentation Techniques Engineering Department

المرحله: الاولى اسم الماده: تقنيات رقمية اسم المحاضر: مدرس جابر حميد مجيد

Number system

- 1- Binary numbers.
- 2- Octal numbers.
- 3- Hexadecimal number.

1. The types of number system:

1-Decimal Number System

This system is composed of 10 numbers or symbols, these 10 Symbols are:

0 1 2 3 4 5 6 7 8 9

These symbols are called digits.

The decimal system, also called base 10 system, because it has 10 digits which is a naturally result of the fact that man has 10 fingers.

2- Binary Number System

In this system there are only two symbols or possible digit values , 0 or 1 . Even so , this base-2 system.

3- Octal Number System

This system is composed of 8 numbers or symbols:

0 1 2 3 4 5 6 7

This is a base -8 system

Al-Mustaqbal University Medical Instrumentation Techniques Engineering Department

المرحله : الاولى اسم الماده: تقنيات رقمية اسم المحاضر : مدرس جابر حميد مجيد

4- Hexa- Decimal System

This system is composed of 16 numbers or symbols (digit):

0 1 2 3 4 5 6 7 8 9 A B C D E F

It is a base – 16 systems

2. Representation of numbers:

1) Decimal:-

$$(124)_{10} = 4 \times 10^0 + 2 \times 10^1 + 1 \times 10^2$$

$$(252.512)_{10} = 2 \times 10^{0} + 5 \times 10^{1} + 2 \times 10^{2} + 5 \times 10^{-1} + 1 \times 10^{-2} + 2 \times 10^{-3}$$

2)Binary :-

$$(1011101)_2 = 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 + 1 \times 2^4 + 0 \times 2^5 + 1 \times 2^6$$

$$= (93)_{10}$$

$$(101.11)_2 = 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= (5.75)_{10}$$

3) Octal :-

$$(537)_8 = 7 \times 8^0 + 3 \times 8^1 + 5 \times 8^2$$

= $(351)_{10}$

4) Hexa- Decimal :-

$$(A01B)_{16} = 11 \times 16^0 + 1 \times 16^1 + 0 \times 16^2 + 10 \times 16^3$$

= $(40987)_{10}$

Al-Mustaqbal University Medical Instrumentation Techniques Engineering Department

المرحله : الاولى اسم الماده: تقنيات رقمية اسم المحاضر : مدرس جابر حميد مجيد

Al-Mustagbal University Medical Instrumentation Techniques Engineering Department

المرحله: الاولى اسم الماده: تقنيات رقمية اسم المحاضر: مدرس جابر حميد مجيد

1. Convert between the types of numbers systems

any base-to-decimal conversion :just use the definition given above.

Decimal-to-binary:-

divide decimal value by 2 (the base) until the value is 0 example: convert the following decimal numbers to the equivalent binary numbers (36, 39.5).

$$0.5 \times 2 = 1.0$$

The binary equivalent of (39.5)10 is (100111.10)2.

A Company of the Comp

Al-Mustaqbal University Medical Instrumentation Techniques Engineering Department

المرحله : الاولى اسم الماده: تقنيات رقمية اسم المحاضر : مدرس جابر حميد مجيد

Decimal-to-Octal :-

A decimal integer can be converted to octal by using the same repeated-division method that we used in the decimal-to-binary conversion, but with a d

Example: convert the following decimal number to equivalent octal number (266) $_{10}$ & (20.75) $_{10}$

$$266/8 = 33$$
 $r = 2$
 $33/8 = 4$ $r = 1$
 $4/8 = 0$ $r = 4$
 $(266)_{10} = 412$

$$20/8 = 2 r = 40.75 \times 8 = 6.0$$

$$2/8 = 0 r = 2$$

The equivalent octal number is (24.6)8

Octal-to-binary :-

The conversion from octal to binary is performed by converting each octal digit to its 3-bit binary equivalent. The eight possible digits are converted as indicated in the following table:

VIII TO THE TOTAL THE TOTAL TO THE TOTAL TOT												
Octal digit	0	1	2	3	4	5	6	7				
Binary digit	000	001	010	011	100	101	110	111				

Example: convert the following octal number to it's equivalent binary number (472)₈

The equivalent binary number is (100111010)₂

AA WANTER THE PROPERTY OF THE

Al-Mustaqbal University Medical Instrumentation Techniques Engineering Department

المرحله : الاولى اسم الماده: تقنيات رقمية اسم المحاضر : مدرس جابر حميد مجيد

Binary-to-octal:-

- 1. group into 3's starting at least significant symbol (if the number of bits is not evenly divisible by 3, then add 0's at the most significant end)
- 2. write 1 octal digit for each group

example:

example:- convert (177)10 to its 8-bit binary equivalent by first converting to octal.

Solution:-

$$(177)_{10} = (261)_{8}$$

$$\frac{2}{010} \frac{6}{110} \frac{1}{001}$$

$$(177)_{10} = (261)_{8} = (010110001)_{2}$$

Tutorials:-

- 1- Convert (641)8 to decimal (Ans. 369).
- 2- Convert (146)10 to octal then from octal to binary (Ans. 222 and 010010010).
- 3- Convert (10011101)2 to octal (Ans. 235).
- 4- Write the next three numbers in this octal counting sequence: 624, 625, 626,
- 5- Convert (975)10 to binary by first converting to octal (Ans. 1111001111).
- 6- Convert binary 1010111011 to decimal by first converting to octal (Ans. 699).

Al-Mustaqbal University Medical Instrumentation Techniques Engineering Department

المرحله: الاولى اسم الماده: تقنيات رقمية اسم المحاضر: مدرس جابر حميد مجيد

Decimal-to-hex:-

This conversion can be done using repeated division by 16.

Example: convert (423)10 to hex.

Hex-to-binary:-

Each hex digit is converted to it's 4-bit binary equivalent as show in the table below:

Hex	0	1_	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Example:

Binary-to-hexadecimal:-

This conversion is just the reverse of the hexa-to-binary conversion process

Example:

ALACATION OF THE PROPERTY OF T

Al-Mustaqbal University Medical Instrumentation Techniques Engineering Department

المرحله: الاولى اسم الماده: تقنيات رقمية اسم المحاضر: مدرس جابر حميد مجيد

Tutorials:-

- 1- Convert (24CE)16 to decimal (Ans. 9422).
- 2- Convert (3117)10 to hex, then from hex to binary (Ans.

C2D and 110000101101)

- 3- Convert (1001011110110101)2 to hex (Ans 97B5).
- 4- Write the next four numbers in this hex counting

sequence: E9A, E9B, E9C, E9D,,,

5- Convert (3527)8 to hex (Ans. (757)16).