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THE BASIC ELEMENTS AND PHASORS

14.2 DERIVATIVE

To understand the response of the basic R, L, and C elements to a sinusoidal signal, you need

to examine the concept of the derivative in some detail.

The derivative dx/dt is defined as the rate of change of x with respect to time. If x fails to change
at a particular instant, dx = 0, and the derivative is zero.

For the sinusoidal waveform, dx/dt is zero only at the positive and negative peaks (wt = /2 and
3/2m in Fig.), since x fails to change at these instants of time.
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the derivative of a sine wave is a cosine wave.
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Note in Fig. that even
though both
waveforms (x1 and x2)
have the same peak
value, the sinusoidal
function  with  the
higher frequency
produces the larger
peak value for the
derivative.
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The derivative of a sine wave has the same period and frequency as the original

sinusoidal waveform.

e(r) = E,, sin (wt = 0) —te(r) = wE,, cos(wt = 0)

= erE”,Icos(wr + 0)
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14.3 RESPONSE OF BASICR, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT

Resistor f,
o L Up
Vm — ’/iR
[m B =7
+
g R v
B 0 ™ 27 C:;
. v Vin sin wt Vi . .
I = ) = R = R sin wf = [, sin wft
For a purely resistive element, the
Vo voltage across and the current through
where I = R the element are in phase, with their peak

values related by Ohm’s law.
In addition. for a given i,

v=1IR=(,smnw)R = I,R sin wt = V,, sin wt

where V. =I1R

m m
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Inductor

—» i; = 1, sin wt + UL ==
- Opposition a
L v, function of fand L
L: v; leads i; by 90°%
v
d. vm ’.L
I
v = L /
dt _;} 1
and, applying differentiation, T - = TR
- = 2
di, d
{ - .
= sin wt) = wl,, cos wt
dt df\ m ) m
di; Lol I ; For an inductor, vi leads iL by 90°, or
=L—= 08 = S . 0
v 7 (wl,, cos wt) = wLl,, cos @ it lags vi. by 90°.
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or v; =V, sin(wt + 90°)

where V. = wlLl,

i, = I sin(wf * 0)

v, = wll, sin(wt = 6 + 907)

The quantity wlL, called the reactance (from the word reaction) of an inductor, is symbolically
represented by XL and is measured in ohms; that is,

XL:Q)L

(ohms. ) X —
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Capacitor

9

—>ir =1
o C
+ Uc =
+ Y ic C
C TN UC —— ‘/IH Sin wi ——®7 ————— |( ______ S —
= Opposition inversely
related to fand C

O

For a particular change in voltage across the capacitor, the greater the value of
capacitance, the greater the resulting capacitive current.

In addition, the fundamental equation relating the voltage across a ca-
pacitor to the current of a capacitor [i = C(dv/dt)] indicates that

MSc. ZAHRAA HAZIM 7



Since an increase in current C: ic leads v by 90°
corresponds to a decrease in k3

opposition, and ic is proportional to w R

and C, the opposition of a capacitor is
inversely related to w (w =2nf) and C.

I m /
d Uc

* == —I\_ ~ e
lc € 3 - 0

dt

and, applying differentiation,

dv d .
r €= F(V'" sin wt) = wV,, cos wt For a capacitor, ic leads vc by 90°, or
: . vc lags ic by 90°.*

Therefore,
dv, ve =V, sinlwf £ 6)
e =€ -5 C(wV,, cos wt) = wCV,, cos wt i = wCV,, sin(wt = 8 + 90°)
or ic = I, sin(wf + 90°)
where L, = oCV,
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The quantity 1/wC, called the reactance of a capacitor, is symboli-
cally represented by X and is measured in ohms: that is,

l | Vi
Xe=—% (ohms, Q) | Xe=— (ohms, )
wC .
_ L di; T dve
In the inductive circuit, v, = L—— In the capacitive circuit, ic = C i
dt !
i L
but i = 7 | dt but Ve = ¢ . Icai

If the source current leads the applied voltage, the network is predominantly
capacitive, and if the applied voltage leads the source current, it is predominantly
inductive.
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EXAMPLE 14.1 The voltage across a resistor is indicated. Find the sinusoidal expression for the
current if the resistor is 10Q) . Sketch the curves for v and i.

a. v = 100sin 377t

b. v = 25 sin(377 + 60°) ‘
vV, = 100V

V., 100V
! "R 100 I, = 10A

m

(v and 7 are in phase), resulting in

i = 10 sin 377t

A
b ! Vm BV 5 A vm =25V —; Ur
. — = — =25
" R 10 €)
f are i ing i I, =285A x
(v and 7 are in phase), resulting in m = &9 : |
. S si . 2w
1 = 2.5sin(377t + 60°) 2 60°
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EXAMPLE 14.3 The current through a 0.1 H coil is provided. Find the sinusoidal expression for

the voltage across the coil. Sketch the v and i curves.

a. 1= 10sin 377t
b. i =7 sin(377t — 70°) UL Vou = 3TN
v leads 7 by 90° . I, = 10A
90 I
___:’)E 0 _72_"_ ™ 3 2T o
L o
a. X; = wL = (377 rad/s)(0.1 H) = 37.7 Q) -
V,=1X;, = (10 A)X37.7Q) =377V
and we know that for a coil v leads ¢ by 90°. Therefore,
v = 377 sin(377¢ + 90°)
b. X; remains at 37.7 ().
V., = LX;, = (7 A)37.7 Q) = 2639V 3 < o
:: —e o 2
and we know that for a coil v leads i by 90°. Therefor 70
v = 263.9 sin(377t — 70° + 90°) A\
and v leads i by 90°.
v = 263.9 sin(377t + 20°)
11
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EXAMPLE 14.6 The current through a 100 pF capacitor is given. Find the sinusoidal expression
for the voltage across the capacitor.

i = 40 sin(500t + 60°)
Solution:

1 1 10°Q 107 Q |
A== o = .= =200
wC (500 rad/s)(100 X 107°F) 5X 10 5

and we know that for a capacitor, v lags 1 by 90°. Therefore,

v = 800 sin(500f + 60° — 90°)
and v = 800 sin(500¢f — 30°)
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14.4 FREQUENCY RESPONSE OF THE BASIC ELEMENTS

A
Ideal Response R
o 22 Q
Resistor R
InductorL St N R
X, kQ) # R versus [ for the range of interest.
AN (K
5 x
§ Straight Line Equation
4+ \
3l /L= 100mH L X, = oL = 2afL = QaL)f = kf withk = 27L

Increasing L g At a frequency of 0 Hz, an inductor takes on
= Zum

1 the characteristics of a short circuit, as
g ] 7 R shown in Fig., at very high frequencies, the
0 \ > 10 B2 f(kHg) characteristics of an inductor approach
Xy =0Qatf=0Hz those of an open circuit.

L

o——000———~ =P

f = very high frequencies

*—oo—

()““\
o
3

0O
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Capacitor C

AX(‘ (kQ))
. . S
For the capacitor, the equation for the reactance
1 A
€ 2xfC 31
can be written as 5L Increasmng ¢
= C = 0.03 puF
1
Xif= =k (a constant) I e
I = 2xC -
| | ! Pl
which matches the basic format for a hyberbola: 0 5 10 15 20 _[(T(Hz)
yx =k
At or near 0 Hz, the characteristics of a X, = ] — ] = 7ea ()
. - €™ 9 9
capacitor approach those of an open circuit, Iy fC LT (0 HZ)C
as shown in Fig., at very high frequencies, a
capacitor takes on the characteristics of a
short circuit
f=0Hz f = very high frequencies
O I O » = o—* o O

AT~
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EXAMPLE 14.8 At what frequency will the reactance of a 200 mH inductor match the resistance
level of a 5 kQ resistor?

Solution: The resistance remains constant at 5 k{2 for the frequency
range of the inductor. Therefore,
R =5000() = X; =2«fL = 2=«Lf
= 27(200 x 10> H)f = 1.257f
and f= 0000 = 3.98 kHz
‘ 1.257

EXAMPLE 14.9 At what frequency will an inductor of 5 mH have the same reactance as a
capacitorof 0.1 uf?

1 ; !
X, =Xc = 2nfL= wfc B> P =1o0c

1 1
27VLC 27xV/(5 X 103 H)(0.1 X 10 °F)
I | 10° Hz

= = = ——~-=17.12kH
x5 % 1000 (27)(2.236 X 1075) ~ 14.05 .
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14.5 AVERAGE POWER AND POWER FACTOR

O—Vip=4 A
+ R .
8VR§2Q 4VR§7
. 20
g | p 7R

+ 1iR
Up Rgzn
- |

Demonstrating that power is delivered at every instant of a sinusoidal voltage waveform (except vy = 0 V).
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Power
delivered to
element by
source

Power
returned to
source by
element

4

, P(W)

L o
P
A R g
16 [~
8V
0
- T,
Power versus time for a purely resistive load.

Any portion of the power curve below the axis reveals that power is being returned to the
source. The average value of the power curve occurs at a level equal to Vm Im/2 as shown in Fig.

This power level is called the average or real power level.

V.1

m-m
P

2V

rms
P

— ( \,3 Vr ms )( \'//3 II'ITIS) 1

N

rms

P av Vrms lFrrrns

P

av
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If the sinusoidal voltage is applied to a network with a combination of R, L, and C components,
the instantaneous equation for the power levels is more complex.

In Fig., a voltage with an initial phase angle is applied to a network with any combination of
elements that results in a current with the indicated phase angle.

The power delivered at each instant of time is then defined by:

p=vi=V_sin(wt + 60 )1, sin(wt + 6;) i =1, sin (@t +6,)
= VI, sin(wt + 6,) sin(lwt + 6,) +
P —>
Using the trigonometric identity o
v=V, sin(wt+80,) Load

_ _ cos(A — B) — cos(A + B)
sinA sin B = = 2

O

the function sin(wt + 6,) sin(wf + 6;) becomes

sin(wt + 8,,) sin(wt + 6;)
cos[(wf + 6,) — (w1 + 6,)] — cos[(wf + 6,) + (o + 6,)]
2
cos(6, — 6;) — cos(2wt + 6, + 6;)
2

p—
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so that Fixed value Time-varying (function of 1)
o

Py | “~

VI" IIN VIN II” .
p = = cos(6, — 6;) | — = cos(2wt + 6, + 6;)

p— —

Note that the second factor in the preceding equation is a cosine wave with an amplitude of
Vmim /2 and with a frequency twice that of the voltage or current. The average value of this
term is zero over one cycle, producing no net transfer of energy in any one direction.

7 1
e %"} COS(_B,_. — 6,')

-_

.
wl
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Since cos(-a) = cos a, the magnitude of average power delivered is
independent of whether v leads i or i leads v.

Defining 8 as equal to | 6, — 6, |, where | | indicates that only the mag-
nitude is important and the sign is immaterial, we havel|
Vinl,
n s =
P = = cos 6 (watts. W) P = Vopalims c0s 0

where P is the average power in watts. This equation can also be written

i m IIN
P = ( _)< ,_> cos 6
V2 V2

= T
or. since V,,-f = —',:— and Ieff -

V2 \/2

MSc. ZAHRAA HAZIM
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Resistor

In a purely resistive circuit, since v and 7 are in phase, 6, —6;| =6 =
0“. and cos 8 = cos 0” = 1, so that
VIII‘II" V2
P=—""= Vidms P = I’e"‘-" — 2. R (W)
Inductor

In a purely inductive circuit, since v leads i by 90°, |9v — 9,—| -
| —00° | = 90°. Therefore.

v"l] m vml m

o ( (9] —
5~ cos 90 =

— —

P =

(0) =0W

The average power or power dissipated by the ideal inductor (no
associated resistance) is zero watts.
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Capacitor

In a purely capacitive circuit, since 7 leads v by 90°, |91, —6;| =0 =
| —90° | = 90°. Therefore,

Vm 5 m vm[ m .
P= ——=e8(90°) =~——(0) =0'W

- —_—

The average power or power dissipated by the ideal capacitor (no associated
resistance) is zero watts.

EXAMPLE 14.10 Find the average power dissipated in a network whose input
current and voltage are the following:

i = 5 sinflwt + 40°)

Vm[m = (IOV)(S A) -

P=— = 25 W
v = 10 sin(wr + 40°) v, LT, |
or R=——= =24
. . . F 4 S A
Since v and i are in phase, the 2 5
o vz _ [(0.707)(10 V)]?
circuit appears to be purely and P = = = = 25 W
resistive at the input terminals. i T A "'g ST ——
= — = == = — S s
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EXAMPLE 14.11 Determine the average power delivered to networks having the following input
voltageand current: 5, = 100 sin(wt + 40°) b, v = 150 sin(wt — 70°)

i = 20 sin(wt + 707) { = 3 sin(wt — 507)
& V= 1008, 8,= 40°
I,=20A, 6,=70°
0= 16,—6, =|40°—70°| = | =30°| = 30°
and
Vv 100 V)(20 A
Pi=— 'SI'" cos 6 = ( ;( ) cos(30%) = (1000 W)(0.866)
= 866 W
b. V, =150V, 6, = —70
I, =3A, 6;=—50°
= |o,—6,| = | —70° — (—50°) |
= | —=70° + 50°| = | —20°| = 20°
and
VI, 150 V)(3 A _
P=—"cosO = ( ) ) cos(207) = (225 W)(0.9397)

2 . 2

= 21143 W
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Power Factor

In the equation P = (VmIm/2)cos ©, the factor that
has significant control over the delivered power
level is the cos ©. No matter how large the voltage
or current, if cos © = 0, the power is zero; if cos ©
= 1, the power delivered is a maximum. Since it
has such control, the expression was given the
name power factor and is defined by

Power factor = FF, — cos f

In terms of the average power and the
terminal voltage and current,

P
F,=cosf =——
P - VTI'I'I?&II'I'I'IS

Capacitive networks have leading power factors, and inductive networks have lagging

power factors.

— Fo=1
Im=5A [
P =250 W
-
Em 100V R § 200
= Purely resistive load with F, = 1.
—_— e =)
Im=5A i
P=0W
-
Ep 100V 200

" Purely inductive load with F,, = 0.
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EXAMPLE 14.12 Determine the power factors of the following loads, and indicate whether
they are leading or lagging:

—» i =2sin(ot +40°)

_>[lf_’A

P

¥ +
Load | v=50sin(wr-20°) Fp =9 LOAD | V=20V
L g = 120 sin(ar + 80°) | (" g -
(a). = Ssin(wt + 30°) -P=100W

a.
b.

cos 8 = cos | 40° — (—20°) | = cos 60° = 0.5 S leading

F =
p
F, = cos# | 80° — 30° | = cos 50° = 0.64 lagging
P 100 W 100 W
. I —icpsf = , == =
3 Vieelofr (20 V)(5 A) 100 W

The load is resistive, and F, is neither leading nor lagging.

MSc. ZAHRAA HAZIM 25



6. COMPLEX NUMBERS

4 Imaginary axis ()

A complex number represents a point in a two-dimensional +

plane located with reference to two distinct axes. This

point can also determine a radius vector drawn from the — 2d
origin to the point. The horizontal axis is called the real Real axis

axis, while the vertical axis is called the imaginary axis.

Two forms are used to represent a complex number:
rectangular and polar. Each can represent a point in the plane
or a radius vector drawn from the origin to that point.

l.Jl'
7. RECTANGULAR FORM (CARTESIAN FORM) C= Xﬂ+ 7Y
|
I
. . . I Ly
The format for the rectangular form is | ¥
I
" . _,!J Ll
C=X+yY - X +
~
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EXAMPLE 14.13 Sketch the following complex -
numbers in the complex plane:

— D ) s
—t—+

MSc. ZAHRAA HAZIM

— —10 — j20
AJ
~10
~10 0
- | +
|
|
i l—zo
|
|
| 20
=-10—-720 " |
C 10— i
¢ = =10.—j20
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14.8 POLAR FORM

The format for the polar form is

C=21416

. J

A negative sign in front of the polar form has
the effect shown in Fig. Note that it results in
a complex number directly opposite the
complex number with a positive sign.

—C= —Z2/6=272/0=180°

| J

MSc. ZAHRAA HAZIM
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EXAMPLE 14.14 Sketch the following complex numbers in the complex plane:

4

C=-42,60°=42 £ 60° + 180°

=42/ + 240

4

J
// .
e 1w

C=T74-120° |

b. C=74£-120°

MSc. ZAHRAA HAZIM

29



14.9 CONVERSION BETWEEN FORMS

Rectangular to Polar

Z=VX+VY

]/
8 — [ -1
Al

C=Z/,6=X+jY

4

|
I
I
I
|
I
I
|
I

=

Polar to Rectangular

X =

Z cos 6

Y =

Z sin 6

MSc. ZAHRAA HAZIM
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EXAMPLE 14.15 Convert the following
from rectangular to polar form:

C=3+j4

and =8

EXAMPLE 14.16 Convert the following from
polar to rectangular form:

C = 10 £45°

X = 10 cos 45° = (10)(0.707) = 7.07
— 10 sin 45° = (10)(0.707) = 7.07
and C = 7.07 + j7.07

MSc. ZAHRAA HAZIM

AJ C=3+/4
|
|
|
Z : T-&-J
5 .
+3 e
—J
)Jj
10 £ 45°
10
45°
v -
— -
—
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14.10 MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS

— 2

. A/ 2 _ — = —j
jg= V-1 J ! j
1

() (G) 44

Complex Conjugate

The conjugate or complex conjugate of a complex number can be found by simply changing the
sign of the imaginary part in the rectangular form or by using the negative of the angle of the
polar form.

4J C=2+;3 4J

[ - C
| /
Lk o 5
| >3 T
| =&

2 | »

x J / \ 30°
19 o y -
| = ¢ +
' —30°
13 ,
| £ \
| 2

—F Comple.x Coax’ljug';ne of C Complex conjugate of C

C.=233 o
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Addition
Ci==xX,xjY, and C, =

EXAMPLE 14.19

+X, +jY, |G +HG = (F5 X)) HjEL L))

a. AddC, =2+ jdand C, =3 + jl.
b. AddC, =3+ j6and C, = —6 + j3.
2. C+GC=Q2+)H+jd+1)=5+/5 -
—
b. C,+C,=(3—6)+j(6+3)=—3+ ;9

MSc. ZAHRAA HAZIM 33



Subtraction Ci=2xX,*xjY, and C,==xX,*jY,

Ci =G =[2Xy — () ]+ — ()]

-

EXAMPLE 14.20

a. Subtract C; = 1 + j4 from C, = 4 + j6.
b. Subtract C, = =2 + j5 from C;, = +3 + j3.

2. C—Co=(@A—-1D+j6-—4)=3+,2

b C,—C,=[3—(-2]+j3-5=5-,2
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Addition or subtraction cannot be performed in polar form unless the
complex numbers have the same angle © or unless they differ only by
multiples of 180°.

EXAMPLE 14.21

A Tj
b. 2.20° —4.£180° =6 .20
~; 5 45\° —4 / 180°
% o ) '
// LB - 4& -
_ + — 4 /£ 180° e 2 —» -
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Multiplication
Cl :X] +jY| and CQ_:X:y_ +]Y:)_

then C,-C,: X, +jY,
X5 + jY
X X5 + jY X5
+ jXiYs + jYi Y
X\ X, + j(Y\ X, + X\Y;) + Y Y(—1)

C -G =XX, - YY) +jYX,+ XY,

EXAMPLE 14.22
a. FindC, -Gy if C;,=2+;3 and C,=5+,I10

a. Using the format above. we have

C, - C> = [(2)(5) — (3)10)] + jI[(3)(5) + (2)(10)]
— —20 + j35
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b. FindC,-CGif C;=-2—-j3 and C,= +4—j6

b. Without using the format, we obtain

—=2 — j3
+4 — j6
—8 — jI2

+ 712 + j%18
—8 +j(—12+ 12) — 18

and C,-C,=-26 =26 Z£180°

In polar form, the magnitudes are multiplied and the angles added algebraically. For example,
for
C] — Zl 401 and Cz = Z-_)_ 407_

we write

Cl x C2 — Z|ZZ/0| -+ 9_)_
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EXAMPLE 14.25

a. Find C,/GC, if C; =15 Z10°and C, = 2 L7°.
b. Find C/C,if C;, =8 £120° and C, = 16 L—50°.
C, 15 £210° 15 . ,
a. G, = @ z0 " g /10° ="T7T3:43
C, 8 £120° 8 _
b. = =——/120° — (—50%).=0.5 £2170°
> G, 16 2—50°  16% ( )

EXAMPLE 14.26 Perform the following operations, leaving the answer in polar or
rectangular form:

2+3) +(4+j6) (2+4)+j3+6)
(7 +j1)—8 —B) 7=3+JT+3)  cum
(6 +j())(4 _jl()) Conjugate
T (4 + j10)(4 — j10)
_ [(6)(4)+(9)(10)] +j[(4)(9) — (6)(10)]
4% + 107

d.

_ 14— 23 _ o008 — i021
=~ i @ ST
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d.

(50 £30°)(5 + j5)

10 £—-20°

(2 £20°)°(3 + j4) _

8 — j6

(50 £30°)(7.07 £45°)

10 £—-20°

3. LTS
]OL 20°

35.35 /75° — (=20°) = 35.35 £95°

(2 £20°)(2£20°)(5 £53.13°)

10 £ —36.87°
_ (4£40°)(5 £53.13°) 20 £93.13°
T 10 £—36.87° 10 ~ —36.87°

3£27° — 6 £—40°

2 /93.13° — (—36.87°) = 2.0 £130°

(2.673 + j1.362) — (4.596 — j3.857)
(2.673 — 4.596) + j(1.362 + 3.857)

— 1.92 + j5.22
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PROBLEMS

SECTION 14.2 Derivative: 1, 3

SECTION 14.3 Response of Basic R, L, and C Elements to a Sinusoidal Voltage or
Current: 4, 6, 8, 13, 15, 20

SECTION 14.4 Frequency Response of the Basic Elements: 22, 23, 25, 27
SECTION 14.5 Average Power and Power Factor: 30, 31, 34, 37, 38
SECTION 14.9 Conversion between Forms: 39, 40

SECTION 14.10 Mathematical Operations with Complex
Numbers: 43, 44, 45, 46, 47
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