

Department of biology

Department of biology

((Microbiology II)) Stage 2

Lecture 10

Bacterial Genetics

By Dr. Asseel Hashim Radhi

Bacterial Genetics

1. Introduction to Bacterial Genetics

- Bacteria are **haploid** organisms \rightarrow one circular chromosome
- Genetics determines:
 - Metabolism
 - Antibiotic resistance
 - Virulence factors
- No nucleus \rightarrow DNA in nucleoid region
- Plasmids: Extra-chromosomal DNA

2. Structure of Bacterial Genome

- Chromosome:
 - Circular, double-stranded DNA
 - No introns
- Plasmids:
 - Small, circular DNA
 - Replicates independently
 - Often carry antibiotic resistance genes (R plasmids), virulence genes

3. Gene Expression in Bacteria

- Transcription and translation occur simultaneously (coupled)
- Operons:
 - Cluster of genes under control of a single promoter
 - Example: *lac operon*
- Regulation:
 - Inducible systems (e.g., *lac*)
 - Repressible systems (e.g., *trp*)

4. Genetic Variation in Bacteria

A. Mutation

- Spontaneous or induced
- Types:
 - Point mutations (silent, missense, nonsense)
 - Insertions/deletions
- Causes: Radiation, chemicals, replication errors

B. Horizontal Gene Transfer (HGT)

- 1. Transformation Uptake of naked DNA from environment
 - Naturally competent bacteria: Streptococcus pneumoniae
- 2. Transduction Transfer via bacteriophages
 - Generalized: Random DNA
 - Specialized: Specific genes near prophage site
- 3. Conjugation Direct transfer via pilus
 - Requires F plasmid (fertility factor)
 - Hfr strains: F plasmid integrated into chromosome

5. Mobile Genetic Elements

- Transposons ("jumping genes"):
 - Move within/between DNA molecules
 - May carry resistance genes
- Integrons:
 - Capture and express gene cassettes (common in resistance)

6. Bacteriophages & Lysogeny

- Lytic cycle: Virus replicates \rightarrow lysis
- Lysogenic cycle: Viral DNA integrates (prophage)
- Lysogenic conversion: Prophage adds new traits to host (e.g., diphtheria toxin, botulinum toxin)

7. Antibiotic Resistance Mechanisms

- Arise from mutation or HGT
- Mechanisms:
 - \circ Enzyme inactivation (β -lactamases)
 - Altered targets (MRSA)
 - Efflux pumps
 - Reduced permeability
- Spread via plasmids, transposons, integrons

8. Practical Applications

- Genetic engineering (cloning, CRISPR)
- Gene therapy tools
- Biotechnology: insulin, vaccines
- Epidemiology: tracking resistance

9. Summary Table

Mechanism	DNA Source	Transfer Method
Mutation	Internal	Errors/Mutagens
Transformation	Environment	Naked DNA uptake
Transduction	Virus (phage)	Generalized/specialized
Conjugation	Another bacterium	Direct contact (pilus)