
Computer I

Al-Mustaqbal University College of Engineering & Technology

Biomedical Engineering Department

MSc. in Computer Engineering: Hamza Waleed Hamza

Lecture No. 5
Control Flow

Conditions

❖ Conditions are very important to understand the flow-control of the code being executed.

❖ Conditions are used to make a decision (choose between two or more alternatives based on the
condition)

➢ For example, conditions become very essential to use when facing different directions, so
based on the condition should choose the thing to be executed.

Use the if statement

If (condition) then run this
statement;

Else

run the other statement;

Conditions

Nested if structure

if … then … elseif – Flowchart

Example 1

#include <iostream>
using namespace std;
int main()
{
int number;
cout << "Enter an integer: ";
cin >> number;
if (number > 0)
{
cout << "You entered a positive integer: " << number ;
}
return 0;

}

Example 2

#include <iostream>

using namespace std;

int main()
{
int number;
cout << "Enter an integer: "; cin >> number;
if (number >= 0) {
cout << "You entered a positive integer: " << number; }
else {
cout << "You entered a negative integer: " << number; }

}

LOOPS
WHY DO WE NEED LOOPS ???

❖ There may be a situation, when you need toexecute a block of code several
number of times.

❖ In general statements are executed sequentially: The first statement in a function is
executed first, followed by the second, and so on.

❖ Aloop statement allows us to execute a statement or group of statements multiple
times

TYPES OF LOOPS :

❖ WHILE LOOP

❖ FOR LOOP

❖ DO-WHILE LOOP

❖ NESTED LOOP

LOOPS => WHILE LOOP

Awhile loop statement repeatedly executes a target statementas long as a givencondition is true.

 Syntax:

The syntax of a while loop in C is:

while(condition)

{

statement(s);

}

LOOPS => WHILE LOOP

❖ Here, statement(s) may be a single
statement or a block of statements.
The condition may be any expression,
and true is any non-zero value. The
loop iterates while the condition is
true.

❖ When the condition becomes false,
program control passes to the line
immediately following the loop

FLOW DAIGRAM

LOOPS => WHILE LOOP

EXAMPLE :

#include <iostream>

#include<stdlib.h> int main

()

{

int a = 10; while(a <

20)

{

printf(“value of a:%d \n”, a); a++;

}

}

When the above code is compiled and executed, it
produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

FOR LOOP:

A for loop is a repetition control structure thatallows you to efficiently
write a loop thatneeds to execute a specific number of times.

Syntax:

The syntax of a for loop in C is:

for (init; condition; increment)

{

statement(s);

}

LOOPS => FOR LOOP

LOOPS => FOR LOOP

❖ The init step is executed first, and only once. This step allows you to declare and initialize any
loop control variables. You are not required to put a statement here, as long as a semicolon
appears.

❖ Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the body
of the loop does not execute and flow ofcontrol jumps tothe next statement just after thefor loop.

❖ After the body of the for loop executes, the flow of control jumps back up to the
increment statement. This statement allows you to update any loop control variables. This
statement can be left blank, as long as a semicolon appears after the condition.

❖ The condition is now evaluated again. If it is true, the loop executes and the process
repeats itself (body of loop, then increment step, and then again condition). After the
condition becomes false, the for loop terminates.

LOOPS => FOR LOOP

Example:

#include<stdlib.h>

#include <iostream>

int main ()

{

for(int a = 10; a < 20;a = a + 1)

{

printf("valueof a:%d \n”,a);

}

}

Flow Diagram

LOOPS => FOR LOOP

❖When the above code is compiled and
executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

LOOPS => DO-WHILE LOOP

DO-WHILE LOOP:

❖ Unlike for and while loops, which
test the loop condition at the top of
the loop, the do...while loop checks
its condition at the bottom of the
loop.

❖ A do...while loop is similar to a while
loop, except that a do...while loop is
guaranteed to execute at least one
time.

Syntax:

The syntax of a do...while loop in C is:

do

{

statement(s);

}

while(condition);

Notice that the conditional

expression appearsat the end of the

loop, so the statement(s) in the loop

execute once before the condition is

tested.

LOOPS => DO-WHILE LOOP

Example:

#include<stdlib.h>

#include <iostream>

int main ()

{

int a = 10;

do

{

printf("value of a:%d\n “ ,a);

a = a + 1;

}while(a < 20);

}

Flow Diagram

LOOPS => DO-WHILE LOOP

❖When the above code is compiled and
executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

❖NESTED LOOPS :

❖A loop can be nested inside of another loop.

❖Syntax:

The syntax for a nested for loop statement in C is as follows: for (init;

condition; increment)

{

for (init; condition; increment)

{

statement(s);

}

statement(s);

//you can put more statements.

}

LOOPS => NESTED LOOP

LOOPS => NESTED LOOP

EXAMPLE :

#include<stdlib.h> int main

()

{

int a=1,b;

while(a<=3)

{

for(b=1;b<=3;b++)

{

printf("a = %d , b = %d\n",a,b);

}

printf("\n"); a++;

}

}

❖ When the above code is compiled and executed, it produces
the following result:

a = 1 , b = 1
a = 1 , b = 2
a = 1 , b = 3

a = 2 , b = 1
a = 2 , b = 2
a = 2 , b = 3

a = 3 , b = 1
a = 3 , b = 2
a = 3 , b = 3

Exercise 1: Write a program to check if a number is even or odd.

#include <stdio.h>

#include <iostream>

int main() {

int num;

printf("Enter an integer: ");

scanf("%d", Cnum);

if (num % 2 == 0) {

printf("%d is an even number.\n", num);

} else {

printf("%d is an odd number.\n", num);

}

}

Exercise 2: Write a program that takes an integer input N and prints all

even numbers from 1 to N using a for loop.

#include <iostream>

using namespace std;

int main() {

int N;

cout << "Enter the value of N: "; cin >> N;

cout << "Even numbers from 1 to " << N << " are: ";

for (int i = 1; i <= N; i++) {

if (i % 2 == 0) {

cout << i << " ";

}

}

cout << endl;

}

Exercise 3: Write a program that calculates the sum of the

first N natural numbers using a while loop.

#include <iostream>

using namespace std;

int main() {

int N, sum = 0, i = 1;

cout << "Enter the value of N: "; cin >> N;

while (i <= N) { sum += i; i++;

}

cout << "The sum of the first " << N << " natural numbers is: " << sum <<

endl;

return 0;

}

Exercise 4: Write a program that prints the multiplication table of a
number using a for loop.

#include <stdio.h>

int main() {

int num;

printf("Enter a number to print its multiplication table: "); scanf("%d", Cnum);

printf("Multiplication table of %d:\n", num); for (int i = 1; i <= 10; i++) {

printf("%d * %d = %d\n", num, i, num * i);

}

return 0;

}

#include <stdio.h>

int main() {

int num1, num2, num3; printf("Enter

three numbers: ");

scanf("%d %d %d", Cnum1, Cnum2, Cnum3);

if (num1 >= num2 CC num1 >= num3) {

printf("The largest number is %d\n", num1);

} else if (num2 >= num1 CC num2 >= num3) {

printf("The largest number is %d\n", num2);

} else {

printf("The largest number is %d\n", num3);

}

}

Exercise 5: Write a program to find the largest of three

numbers using if-else

break Statement

❖ In C programming, break is used in terminating the loop immediately after it
is encountered. The break statement is used with conditional if statement.

❖ Syntax of break statement

break;

❖ Flow Chart Of Break Statement

Example of break statement

Writea C programtofindaverageofmaximum ofn positivenumbers entered byuser. But, ifthe inputis
negative, display theaverage(excludingtheaverageofnegative input)and end theprogram.

#include <iostream>

using namespace std;

int main() {

 int n;

 float num, sum = 0;

 int count = 0;

 cout << "Enter the maximum number of inputs: ";

 cin >> n;

 for (int i = 1; i <= n; ++i) {

 cout << "Enter number " << i << ": ";

 cin >> num;

 if (num < 0) {

 break; // End input on negative number

 }

 sum += num;

 count++;

 }

 if (count > 0) {

 float average = sum / count;

 cout << "Average = " << average << endl;

 } else {

 cout << "No positive numbers entered." << endl;

 }

 return 0;

}

Enter the maximum number of inputs: 4
Enter number 1: 1.5
Enter number 2: 12.5
Enter number 3: 7.2
Enter number 4: -1
Average = 7.07

❖ It is sometimes desirable to skip some statements inside
the loop. In such cases, continue statements are used.

❖Syntax of continue statement continue;

❖Flow Chart Of Continue Statement

Continue Statement

Example of continue statement

Example: Skip Number 3

#include <iostream>

using namespace std;

int main() {

 for(int i = 1; i <= 5; i++) {

 if(i == 3) {

 continue; // Skip number 3

 }

 cout << "Number: " << i << endl;

 }

 return 0;

}

Output :
Number: 1
Number: 2
Number: 4
Number: 5

Switch Statement
❖Decision making are needed when, the program encounters the

situation to choose a particular statement among many statements. If
a programmer has to choose one block of statement among many
alternatives, nested if...else can be used but, this makes programming
logic complex. This type of problem can be handled in C programming
using switch statement.

❖Syntax of switch...case

switch (n) { case constant1:

code/s to be executed if n equals to constant1; break; case
constant2:

code/s to be executed if n equals to constant2; break; . . . default:

code/s to be executed if n doesn't match to any cases;

}

Example of switch...case statement
Write a program that asks user to select an arithmetic operator('+','-','*' or '/') and two

operands and perform the corresponding calculation on the operands.

include <stdio.h> int main()

{

char o;

float num1,num2;

printf("Select an operator either+ or - or * or /\n"); scanf("%c",Co);

printf("Enter two operands: ");

scanf("%f%f",Cnum1,Cnum2); switch(o) {

case '+':

printf("%.1f + %.1f = %.1f",num1, num2, num1+num2); break;

case '-':

printf("%.1f - %.1f = %.1f",num1, num2, num1-num2); break;

case '*':

printf("%.1f * %.1f = %.1f",num1, num2, num1*num2); break;

case '/':

printf("%.1f / %.1f = %.1f",num1, num2, num1/num2); break;

default:

printf("Error! operator is not correct"); break; }

}

Flow Chart Of Switch…Case

Output: Enter operator either + or - or * or / * Enter two operands: 2.3 4.5 2.3 * 4.5 = 10.3

The goto Statement in
C++

What is goto?
The goto statement allows the program to jump to a labeled statement.
It provides unconditional control transfer.
Use it carefully – excessive use can make the code hard to read and maintain (often called "spaghetti code").
Example :
#include <iostream>
using namespace std;

int main() {
 int number = 1;

 start:
 cout << number << " ";
 number++;

 if (number <= 5)
 goto start;

 return 0;
}

Exercise 1: Write a C++ program that uses a loop to find the first multiple of 5 between 1 and 50. Use the break statement to

exit the loop once the multiple is found.

#include <iostream> using namespace std; int main()

{

for (int i = 1; i <= 50; ++i) { if (i % 5 == 0) {

cout << "The first multiple of 5 between 1 and 50 is: " << i << endl; break;

}

}

}

Exercise 2: Write a C++ program that uses a loop to print all numbers from 1 to 10, except the number 4. Use the continue
statement to skip the number 4.

#include <iostream> using namespace std; int main() {

for (int i = 1; i <= 10; ++i) { if (i == 4) {

continue;

}

cout << i << " ";

}

cout << endl;

}

Exercise 3: Write a C++ program that reads an integer from the keyboard and prints the corresponding

day of the week. Use a switch statement to handle the different cases (1 for Monday, 2 for Tuesday, etc.).

#include <iostream>

using namespace std; int main() {

int day;

cout << "Enter a number (1-7) to get the corresponding day of the week: "; cin >> day;

switch (day) { case 1:

cout << "Monday" << endl; break;

case 2:

cout << "Tuesday" << endl; break;

case 3:

cout << "Wednesday" << endl; break;

case 4:

cout << "Thursday" << endl; break;

case 5:

cout << "Friday" << endl; break;

case 6:

cout << "Saturday" << endl; break;

case 7:

cout << "Sunday" << endl; break;

default:

cout << "Invalid input! Please enter a number between 1

and 7." << endl;

}

}

Exercise 4: Write a C++ program that reads a student's score (0-100) from the keyboard and determines their grade based on

the score. Use a switch statement to handle the different

grade ranges (A, B, C, D, F).
#include <iostream>

using namespace std; int main() {

int score; char grade;

cout << "Enter the student's score (0-100): "; cin >> score;

switch (score / 10) { case 10:

case 9: grade = 'A'; break;

case 8:

grade = 'B'; break;

case 7:

grade = 'C'; break;

case 6: grade = 'D'; break;

default:

grade = 'F'; break;

}

cout << "The grade is: " << grade << endl;

}

Home Works

❖Task: Write a C++ program that reads student scores from the
keyboard until a negative score is entered. Use a switch statement to
determine the grade based on the score and display the result. Use
continue to skip invalid scores (scores not in the range 0-100).

❖Requirements:

1.Continuously read scores from the user until a negative score is

entered.

2.Use continue to skip invalid scores (less than 0 or greater than 100).

3.Use a switch statement to assign a grade (A, B, C, D, F) based on the

score range.

4.Use break to exit the loop when a negative score is entered.

THANK
YOU

	Slide 1
	Slide 2: Conditions
	Slide 3: Conditions
	Slide 4: Nested if structure
	Slide 5: if … then … elseif – Flowchart
	Slide 6: Example 1
	Slide 7: Example 2
	Slide 8: LOOPS
	Slide 9: LOOPS => WHILE LOOP
	Slide 10: LOOPS => WHILE LOOP
	Slide 11: LOOPS => WHILE LOOP
	Slide 12
	Slide 13: LOOPS => FOR LOOP
	Slide 14: LOOPS => FOR LOOP
	Slide 15: LOOPS => FOR LOOP
	Slide 16: LOOPS => DO-WHILE LOOP
	Slide 17: LOOPS => DO-WHILE LOOP
	Slide 18: LOOPS => DO-WHILE LOOP
	Slide 19: LOOPS => NESTED LOOP
	Slide 20: LOOPS => NESTED LOOP
	Slide 21: Exercise 1: Write a program to check if a number is even or odd.
	Slide 22
	Slide 23
	Slide 24: Exercise 4: Write a program that prints the multiplication table of a number using a for loop.
	Slide 25
	Slide 26: break Statement
	Slide 27: Example of break statement
	Slide 28
	Slide 29: Example of continue statement
	Slide 30: Switch Statement
	Slide 31: Example of switch...case statement
	Slide 32: The goto Statement in C++
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Home Works
	Slide 37: THANK YOU

