

Asst.lec.Hiba Diaa Alrubaie
MSc in Biomedical Engineering
Lecture 7
Biomedical Engineering Department

Introduction

Physiological signals are measurable quantities that reflect the state and functioning of the human body. These signals are essential in medical diagnosis, monitoring, and research.

Signal Acquisition Systems:

- Sensors and Transducers: Devices that convert biological signals into electrical signals. Examples include electrodes, pressure sensors, and photodetectors.
- Signal Conditioning: Amplification, filtering, and conversion of the raw signal into a format suitable for analysis.

Signal Acquisition Process

1. Transduction:

- Conversion of physiological parameters into electrical signals.
- Examples: ECG electrodes convert ionic currents from the heart into electrical voltages.

2. Amplification:

- Increases the magnitude of the signal to make it detectable and usable.
- Ensures the signal is strong enough to be processed by subsequent stages without significant noise interference.

3. Filtering:

- Removes unwanted noise and artifacts.
- Types: Low-pass, high-pass, band-pass, and notch filters.
- Importance: Enhances the quality of the signal for accurate analysis.

- Low-pass filter: To remove high-frequency noise like EMG.
- High-pass filter: To eliminate low-frequency noise like baseline wander.
- Notch filter: To specifically target power line interference.

4. Analog-to-Digital Conversion (ADC):

- Converts continuous analog signals into discrete digital signals.
- Parameters: Sampling rate (must be sufficiently high to capture signal details, per Nyquist theorem) and resolution (number of bits used in conversion).

Digital Data Acquisition System

Types of Biomedical Signals and Acquisition Techniques

- 1. Electrocardiography (ECG):
- Measures electrical activity of the heart.
- Electrodes placed on the skin detect the voltage differences caused by cardiac muscle depolarization and repolarization.
- Common configurations: 3-lead, 5-lead, and 12-lead systems.

2. Electroencephalography (EEG):

- Records electrical activity of the brain.
- Electrodes placed on the scalp capture voltage fluctuations resulting from neuronal activity.
- Used in diagnosing epilepsy, sleep disorders, and brain death.

3.Blood Pressure Monitoring:

- Non-invasive: Uses a cuff and oscillometric or auscultatory methods.
- Invasive: Direct measurement via a catheter inserted into an artery.

4. Electrooculography (EOG)

- Signal: Electrical potential generated by eye movements.
- Measurement: Electrodes placed around the eyes.
- Uses: Tracking eye movements, diagnosing oculomotor disorders, and in human-computer interface systems.

Components: Horizontal and vertical eye movements.

5. Respiratory Signals

- Signal: Airflow and lung volumes during breathing.
- Measurement: Spirometry, respiratory inductive plethysmography, and capnography.
- Uses: Diagnosing and monitoring respiratory conditions like asthma, COPD, and sleep apnea.
- Components: Tidal volume, respiratory rate, and end-tidal CO2 levels.

6. Temperature

- Signal: Body temperature.
- Measurement: Thermometers, thermocouples, and infrared sensors.
- Uses: Detecting fever, hypothermia, and monitoring during surgery or critical care.
- Components: Core and peripheral temperature measurements.

7. Blood Glucose

- Signal: Concentration of glucose in the blood.
- Measurement: Blood samples using glucometers or continuous glucose monitors (CGMs).
- Uses: Managing diabetes, monitoring metabolic health.
- Components: Blood glucose levels at different times, trends over time.

8. Pulse Oximetry

- Signal: Oxygen saturation of hemoglobin in the blood.
- Measurement: Optical sensors (typically finger clip).
- Uses: Monitoring oxygen levels in various clinical settings, especially during anesthesia and intensive care.
- Components: SpO2 percentage.

