

Subject Name: Calculus I2

1st Class, Second Semester

Academic Year: 2024-2025

Lecturer: Dr. Amir N.Saud

Email: amir-najah@uomus.edu.iq

Lecture No. 3

Lecture Title: The Exponential Function

The number *e*

The number e is that number in the domain of the natural logarithm satisfying

$$\ln(e) = 1$$

The number e can be calculated as the limit

Its value is calculated with a computer to 15 places accuracy

$$e = 2.718281828459045$$
.

The Function $y = e^x$

We can raise the number e to a rational power r in the usual way:

We have not yet found a way to give an obvious meaning to ex for x irrational. But In-1 x has meaning for any x, rational or irrational. So Equation (1) provides a way to extend the definition of ex to irrational values of x. The function In-1 x is defined for all x, so we use it to assign a value to ex at every point where had no previous definitio

$$e^2 = e.e$$
, $e^{-2} = \frac{1}{e^2}$, $e^{1/2} = \sqrt{e}$

and so on. Since e is positive, e^r is positive too. Thus, e^r has a logarithm. When we take the logarithm, we find that

$$\ln e^r = r \ln e = r, 1 = r$$

Since ln *x* is one-to-one and

$$\ln(\ln^{-1} r) = r$$

this equation tells us that

$$e^r = \ln^{-1} r = \exp r$$
 for r rational

Generally

For every real number *x*,

$$e^x = \ln^{-1} x = \exp x.$$

Inverse Equations for e^x and $\ln x$

$$e^{\ln x} = x$$
 for all $x > 0$

$$ln(e^x) = x$$
 for all x

The domain of $\ln x$ is $(0,\infty)$, and its range is $(-\infty,\infty)$. So the domain of e^x is $(-\infty,\infty)$, and its range is $(0,\infty)$.

Example Using the Inverse Equations

$$\ln e^2 = 2$$

$$\ln \sqrt{e} = \ln e^{1/2} = \frac{1}{2}$$

$$\ln e^{\sin x} = \sin x$$

$$e^{\ln 2}=2$$

$$e^{\ln(x^2+1)} = x^2 + 1$$

$$e^{3\ln 2} = e^{\ln 2^3} = 2^3 = 8$$

Example

Find
$$k$$
 if $e^{2k} = 10$

Sol.

Take the natural logarithm of both sides:

$$\ln e^{2k} = \ln 10$$

$$2k = \ln 10$$

$$k = \frac{1}{2} \ln 10$$

Laws of Exponents for e^x

For all numbers x, x_1 , and x_2 the natural exponential e^x obeys the following laws:

1.
$$e^{x_1}$$
, $e^{x_2} = e^{x_1 + x_2}$

2.
$$e^{-x} = \frac{1}{e^x}$$

$$3. \frac{e^{x_1}}{e^{x_2}} = e^{x_1 - x_2}$$

4.
$$(e^{x_1})^{x_2} = e^{x_1x_2} = (e^{x_2})^{x_1}$$

Typical values of e^x

x	e ^x (rounded)
-1	0.37
0	1
1	2.72
2	7.39
10	22026
100	2.6881×10^{43}

Example

Applying the Exponent Laws

1.
$$e^{x+\ln 2} = e^x$$
. $e^{\ln 2} = 2e^x$

$$2. e^{-\ln x} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

$$3.\frac{e^{2x}}{e} = e^{2x-1}$$

4.
$$(e^3)^x = e^{3x} = (e^x)^3$$

The Derivative of e^x

The exponential function is differentiable because it is the inverse of a differentiable function whose derivative is never zero.

$$\frac{d}{dx}e^x = e^x$$

If u is any differentiable function of x, then

$$\frac{d}{dx}e^u = e^u \frac{du}{dx}$$

Example

Find dy/dx for the following

1.
$$y = 5e^x$$

Sol.

$$\frac{dy}{dx} = 5e^x$$

$$2. y = e^{\sin x}$$

Sol.

$$\frac{dy}{dx} = e^{\sin x} \cdot \frac{d}{dx} (\sin x) = \cos x \cdot e^{\sin x}$$

a^x and $\log_a x$

For any numbers a > 0 and x, the exponential function with base a is:

$$a^x = e^{x \ln a}$$

The Derivative of a^x

If a > 0 and u is a differentiable function of x, then a^u is a differentiable function of x and

$$\frac{d}{dx}a^u = a^u \cdot \ln a \frac{du}{dx}$$

Example

Find dy/dx for the following

1.
$$y = 3^x$$

Sol.

$$\frac{dy}{dx} = 3^x \cdot \ln 3$$

2.
$$y = 3^{-x}$$

Sol.

$$\frac{dy}{dx} = 3^{-x} \cdot \ln 3 \frac{d}{dx} (-x) = -3^{-x} \cdot \ln 3$$

$$3. y = 3^{\sin x}$$

Sol.

$$\frac{dy}{dx} = 3^{\sin x} \cdot \ln 3 \frac{d}{dx} (\sin x) = 3^{\sin x} \cdot \ln 3 \cdot \cos x$$

The Inverse of a^x

For any positive number $\neq 1$,

 $\log_a x$ is the inverse function of a^x .

$$a^{\log_a x} = x$$
 for $x > 0$
 $\log_a (a^x) = x$ for all x

And

$$\log_a x = \frac{\ln x}{\ln a}$$

The Derivative of $\log_a x$

To find derivatives involving base *a* logarithms, we convert them to natural logarithms.

If u is a positive differentiable function of x, then

$$\frac{d}{dx}\log_a u = \frac{d}{dx}\left(\frac{\ln u}{\ln a}\right) = \frac{1}{\ln a} \cdot \frac{d}{dx}\ln u = \frac{1}{\ln a} \cdot \frac{1}{u} \cdot \frac{du}{dx}$$

$$\frac{d}{dx}\log_a u = \frac{1}{\ln a} \cdot \frac{1}{u} \cdot \frac{du}{dx}$$

Example

$$\frac{d}{dx}\log_{10}(3x+1) = \frac{1}{\ln 10} \cdot \frac{1}{3x+1} \cdot \frac{d}{dx}(3x+1) = \frac{3}{\ln 10} \cdot \frac{1}{3x+1}$$