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Differentiation of Power Series 

A function defined by a power series has derivatives of 

all orders at every point of the interior of its interval of 

convergence. The first derivative is obtained by 

𝒅

𝒅𝒙
∑(𝒂𝒏𝒙𝒏) = ∑(𝒏𝒂𝒏𝒙𝒏−𝟏)

∞

𝒏=𝟎

∞

𝒏=𝟎

 

For the second derivatives, the terms are differentiated 

again, and so on. 

  

The Term by Term Differentiation Theorem;  

If 𝒇(𝒙) = ∑ 𝒂𝒏𝒙𝒏∞
𝒏=𝟎  has radius of convergence 𝝆, then 

 1. ∑ (𝒏𝒂𝒏𝒙𝒏−𝟏)∞
𝒏=𝟎  also has radius of convergence 𝝆. 

𝟐. 𝒇(𝒙) is differentiable on (−𝝆, 𝝆) 

3. 𝒇′(𝒙) = ∑ (𝒏𝒂𝒏𝒙𝒏−𝟏)∞
𝒏=𝟎  on (−𝝆, 𝝆) 

Examples:  

1. Prove that 
𝒅

𝒅𝒙
(𝒔𝒊𝒏𝒙) = 𝒄𝒐𝒔𝒙. 

𝒔𝒊𝒏𝒙 = 𝒙 −
𝒙𝟑

𝟑!
+

𝒙𝟓

𝟓!
− ⋯ 

𝒅

𝒅𝒙
(𝒔𝒊𝒏𝒙) = 𝟏 −

𝒙𝟐

𝟐!
+

𝒙𝟒

𝟒!
− ⋯ = 𝒄𝒐𝒔𝒙 

 

Note that convergence at one or both endpoints of the 

interval of convergence of a power series may be lost in 

the process of differentiation. 



2. The series 𝒇(𝒙) = ∑
𝒙𝒏

𝒏
∞
𝒏=𝟎  converges for −𝟏 ≤ 𝒙 < 𝟏. 

The series of derivatives 

𝒇′(𝒙) = ∑ 𝒙𝒏−𝟏

∞

𝒏=𝟎

= 𝟏 + 𝒙 + 𝒙𝟐 + ⋯ 

Is a geometric series that converges only for −𝟏 < 𝒙 < 𝟏. 

The series diverges at the endpoints 𝒙 = ±𝟏. 

 

Integration of Power Series: 

Just as a power series may be differentiated term by 

term, it may also be integrated term by term. The new 

series will surely converge in the open interval where 

the orginal series converges, and it may converge at one 

or both of the endpoints as well. 

The Term by Term Integration Theorem 

If 𝒇(𝒙) = ∑ 𝒂𝒏𝒙𝒏∞
𝒏=𝟎  has radius of convergence 𝝆, then 

 1. ∑ (
𝒂𝒏𝒙𝒏+𝟏

𝒏+𝟏
)∞

𝒏=𝟎  also has radius of convergence 𝝆. 

𝟐. ∫ 𝒇(𝒙)𝒅𝒙 exists for 𝒙 in (−𝝆, 𝝆) 

3. ∫ 𝒇(𝒙)𝒅𝒙 = ∑ (
𝒂𝒏𝒙𝒏+𝟏

𝒏+𝟏
)∞

𝒏=𝟎  on (−𝝆, 𝝆) 

 

Examples: 

1. Find 𝒍𝒏(𝟏 + 𝒙)  

The series 
𝟏

𝟏+𝒕
= 𝟏 − 𝒕 + 𝒕𝟐 − 𝒕𝟑 + ⋯ 



𝒍𝒏(𝟏 + 𝒙) = ∫
𝟏

𝟏 + 𝒕
𝒅𝒕

𝒙

𝟎

= ∫ (𝟏 − 𝒕 + 𝒕𝟐 − 𝒕𝟑 + ⋯ )𝒅𝒕
𝒙

𝟎

 

= 𝒕 −
𝒕𝟐

𝟐
+

𝒕𝟑

𝟑
−

𝒕𝟒

𝟒
+ ⋯ |

𝟎

𝒙

= 𝒙 −
𝒙𝟐

𝟐
+

𝒙𝟑

𝟑
−

𝒙𝟒

𝟒
+ ⋯ , −𝟏 < 𝒙 ≤ 𝟏 

 

Indeteminate Forms  

We may determine the following form 

𝐥𝐢𝐦
𝒙→𝒙𝟎

𝒇(𝒙)

𝒈(𝒙)
 

using Taylor series for one or more functions. 

 

Examples: 

1. Evaluate  𝐥𝐢𝐦
𝒙→𝟎

𝒍𝒏𝒙

(𝒙−𝟏)
 

Let 𝒇(𝒙) = 𝒍𝒏𝒙, 𝒇(𝟏) = 𝟎 

𝒇′(𝒙) =
𝟏

𝒙
 ,  𝒇′(𝟏) = 𝟏 

𝒇′′(𝒙) = −
𝟏

𝒙𝟐  , 𝒇′′(𝟎) = −𝟏 

So 

𝑳𝒏𝒙 = 𝟎 + (𝒙 − 𝟏) −
𝟏

𝟐
(𝒙 − 𝟏)𝟐 + ⋯, 

𝑳𝒏𝒙

𝒙 − 𝟏
= 𝟏 −

𝟏

𝟐
(𝒙 − 𝟏) + ⋯, 

and 



𝐥𝐢𝐦
𝒙→𝟏

𝒍𝒏𝒙

(𝒙 − 𝟏)
= 𝐥𝐢𝐦

𝒙→𝟎
(𝟏 −

𝟏

𝟐
(𝒙 − 𝟏) + ⋯ ) = 𝟏 

 

2. 𝐥𝐢𝐦
𝒙→𝟎

𝒔𝒊𝒏𝒙−𝒕𝒂𝒏𝒙

𝒙𝟑  

𝒔𝒊𝒏𝒙 = 𝒙 −
𝒙𝟑

𝟑!
+

𝒙𝟓

𝟓!
− ⋯ 

𝒕𝒂𝒏𝒙 = 𝒙 +
𝒙𝟑

𝟑!
+

𝟏𝟐

𝟓
𝒙𝟓 + ⋯ 

𝒔𝒊𝒏𝒙 –  𝒕𝒂𝒏𝒙

= (𝒙 −
𝒙𝟑

𝟑!
+

𝒙𝟓

𝟓!
− ⋯ ) − (𝒙 +

𝒙𝟑

𝟑
+

𝟏𝟐

𝟓
𝒙𝟓 + ⋯ ) 

= −
𝒙𝟑

𝟐
−

𝒙𝟓

𝟖
− ⋯ = 𝒙𝟑 (−

𝟏

𝟐
−

𝒙𝟐

𝟖
− ⋯ ) 

𝐥𝐢𝐦
𝒙→𝟎

(𝒔𝒊𝒏𝒙 –  𝒕𝒂𝒏𝒙) = −
𝟏

𝟐
 

 

3. 𝐥𝐢𝐦
𝒙→𝟎

(
𝟏

𝒔𝒊𝒏𝒙
 – 

𝟏

𝒙
) 

𝐥𝐢𝐦
𝒙→𝟎

(
𝟏

𝒔𝒊𝒏𝒙
 – 

𝟏

𝒙
) 

𝟏

𝒔𝒊𝒏𝒙
 – 

𝟏

𝒙
=

𝒙 − 𝒔𝒊𝒏𝒙

𝒙𝒔𝒊𝒏𝒙
=

𝒙 − (𝒙 −
𝒙𝟑

𝟑!
+

𝒙𝟓

𝟓!
− ⋯ )

𝒙. (𝒙 −
𝒙𝟑

𝟑!
+

𝒙𝟓

𝟓!
− ⋯ )

 



=
𝒙𝟑 (

𝟏
𝟑!

+
𝒙𝟐

𝟓!
− ⋯ )

𝒙𝟐. (𝟏 −
𝒙𝟐

𝟑!
+ ⋯ )

= 𝒙.

𝟏
𝟑!

+
𝒙𝟐

𝟓!
− ⋯

𝟏 −
𝒙𝟐

𝟑!
+ ⋯

 

Therefor 

𝐥𝐢𝐦
𝒙→𝟎

(
𝟏

𝒔𝒊𝒏𝒙
 – 

𝟏

𝒙
) = 𝐥𝐢𝐦

𝒙→𝟎
(𝒙.

𝟏
𝟑!

+
𝒙𝟐

𝟓!
− ⋯

𝟏 −
𝒙𝟐

𝟑!
+ ⋯

) = 𝟎 

 


