Lesson Four

8085 Memory map

Lesson Objectives:

- To determine the addresses range for each memory chip
- To draw the memory map
- To design a system the fulfills the requirements.

Pre Test:

- Define the memory map
- Illustrate the Basic concept in memory interfacing.
- How many address lines needed to address 2048 bytes of memory.

Memory map

It is a pictorial representation in which memory devices are located in the entire range of addresses

Memory addresses: provide the location of various memory devices in the system.

❖ The interfacing logic defines the range of memory addresses of each memory device.

Memory interfacing:

• Typical memory chip

Basic concept in memory interfacing:

- 1. Select the chip (higher order address to activate **cs**)
- 2. Identify the memory location (low order address to enable the F/F)
- 3. Enable the I/P buffer (using WR) OR O/P buffer (using RD)

To interface the memory with MP:

1. Connect the low order of AB to the address pins of memory chip.

- 2. Decode the higher AB to generate unique address to the memory chip which activate the **CS**
- 3. Generate the control signals MEMR & MEMW by combining RD, WR with IO/M

Ex(1) :Design a cct. That connect $\frac{1}{4}$ k of RAM chip to a μP with AB= 10 bits , DB=8 bits. Draw the memory map.

SOL.

						Hig ord				Low order						
						A_9	A_8	A_7	A6	A_5	A_4	A_3	A_2	A_1	A_0	
<u>Sol1</u>	O	O	O	Н	=	0	0	0	0	0	0	0	0	0	0	1 st
	O	F	F	Н	=	0	0	1	1	1	1	1	1	1	1	Last location
Sol2	1	O	O	Н	=	0	1	0	0	0	0	0	0	0	0	
	1	F	F	Н	=	0	1	1	1	1	1	1	1	1	1	
Sol3	2	O	O	Н	=	1	0	0	0	0	0	0	0	0	0	
	2	F	F	Н	=	1	0	1	1	1	1	1	1	1	1	
<u>Sol4</u>	3	О	О		=	1	1	0	0	0	0	0	0	0	0	
	3	F	F		=	1	1	1	1	1	1	1	1	1	1	

Ex: What will be the range of address & foldback space if exist for each memory chip.

1. Replace 4 K RAM by 1 K SRAM

$$A_{11}A_{10} = XX$$

2. Replace 4 K ROM by 512 ROM

$$A_{11}A_{10}A_9 = XXX$$

- 3. Replace A_{12} by A_{15}
- 4. Connect E1 & E2 to ground
- 5. Exchange CS of RAM to O₅
- 6. Connect E₃ to A₁₅
- 7. Connect $4K \longrightarrow 2K$ with linear decode

Ex (2): For the same cct in Ex1, find the range of addresses, fold back space & type of decoding for each memory chip if:

- A) Connect E₃ to Vcc
- B) Can we connect IO/M to E3 and RD, WR pins of each chip to RD & WR signal?
- C) Replace RAM by 2K RAM
- D) Replace ROM by 1 K EPROM
- E) Connect A to Vcc and eliminate A_{12} .
- F) For the same ROM of addresses in Ex1, modify the cct while connecting E3 to A15. So that RAM the range of ram addresses equals to C000 CFFF

Reference:

8085 µp architecture and programming_Gonkar