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8.2 Integration by Parts 561

Integration by Parts

Since

and

it is apparent that

In other words, the integral of a product is generally not the product of the individual-
integrals:

Integration by parts is a technique for simplifying integrals of the form

It is useful when ƒ can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integral

is such an integral because can be differentiated twice to become zero and
can be integrated repeatedly without difficulty. Integration by parts also applies

to integrals like

in which each part of the integrand appears again after repeated differentiation or
integration.

In this section, we describe integration by parts and show how to apply it.

Product Rule in Integral Form

If ƒ and g are differentiable functions of x, the Product Rule says

In terms of indefinite integrals, this equation becomes

L  
d
dx

 [ƒsxdgsxd] dx = L  [ƒ¿sxdgsxd + ƒsxdg¿sxd] dx

d
dx

 [ƒsxdgsxd] = ƒ¿sxdgsxd + ƒsxdg¿sxd .

L  ex sin x dx

gsxd = ex
ƒsxd = x

L  xex dx

L  ƒsxdgsxd dx .

L  ƒsxdgsxd dx  is not equal to L  ƒsxd dx #L  gsxd dx .

L  x # x dx Z L  x dx #L  x dx .

L  x2 dx = 1
3 x3 + C ,

L  x dx = 1
2 x2 + C

8.2
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562 Chapter 8: Techniques of Integration

(1)L  ƒsxdg¿sxd dx = ƒsxdgsxd - L  ƒ¿sxdgsxd dx

Integration by Parts Formula

(2)L  u dy = uy - L  y du

or

Rearranging the terms of this last equation, we get

leading to the integration by parts formula
Lƒsxdg¿sxd dx = L  

d
dx

 [ f sxdgsxd] dx - Lƒ¿(x)g(x) dx

L  
d
dx

 [ f sxdgsxd] dx = L  ƒ¿sxdgsxd dx + Lƒ(x)g¿(x) dx .

Sometimes it is easier to remember the formula if we write it in differential form. Let
and Then and Using the Substitution

Rule, the integration by parts formula becomes
dy = g¿sxd dx .du = ƒ¿sxd dxy = gsxd .u = ƒsxd

This formula expresses one integral, in terms of a second integral, 
With a proper choice of u and y, the second integral may be easier to evaluate than the
first. In using the formula, various choices may be available for u and dy. The next
examples illustrate the technique.

EXAMPLE 1 Using Integration by Parts

Find

Solution We use the formula with

Simplest antiderivative of cos x

Then

Let us examine the choices available for u and dy in Example 1.

EXAMPLE 2 Example 1 Revisited

To apply integration by parts to

L  x cos x dx = L  u dy

L  x cos x dx = x sin x - L  sin x dx = x sin x + cos x + C .

 u = x, dy = cos x dx,
du = dx,  y = sin x.

L  u dy = uy - L  y du

L  x cos x dx .

1  y du .1  u dy ,
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we have four possible choices:

1. Let and 2. Let and 
3. Let and 4. Let and 

Let’s examine these one at a time.
Choice 1 won’t do because we don’t know how to integrate to get y.
Choice 2 works well, as we saw in Example 1.
Choice 3 leads to

and the new integral

This is worse than the integral we started with.
Choice 4 leads to

so the new integral is

This, too, is worse.

The goal of integration by parts is to go from an integral that we don’t see how
to evaluate to an integral that we can evaluate. Generally, you choose dy first to be
as much of the integrand, including dx, as you can readily integrate; u is the leftover part.
Keep in mind that integration by parts does not always work.

EXAMPLE 3 Integral of the Natural Logarithm

Find

Solution Since can be written as we use the formula
with

Simplifies when differentiated Easy to integrate

Simplest antiderivative

Then

Sometimes we have to use integration by parts more than once.

L  ln x dx = x ln x - L  x # 1x  dx = x ln x - L  dx = x ln x - x + C .

 y = x . du = 1
x  dx, 

 dy = dx u = ln x

1  u dy = uy - 1  y du
1  ln x # 1 dx ,1  ln x dx

L  ln x dx .

1  y du
1  u dy

L  y du = -L  
x2

2  sin x dx .

 u = cos x, dy = x dx,
du = -sin x dx,  y = x2>2,

L  y du = Lsx cos x - x2 sin xd dx .

 u = x cos x, dy = dx,
du = scos x - x sin xd dx,  y = x,

dy = x cos x dx

dy = x dx .u = cos xdy = dx .u = x cos x
dy = cos x dx .u = xdy = x cos x dx .u = 1

8.2 Integration by Parts 563
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EXAMPLE 4 Repeated Use of Integration by Parts

Evaluate

Solution With and we have

The new integral is less complicated than the original because the exponent on x is
reduced by one. To evaluate the integral on the right, we integrate by parts again with

Then and

Hence,

The technique of Example 4 works for any integral in which n is a positive
integer, because differentiating will eventually lead to zero and integrating is easy.
We say more about this later in this section when we discuss tabular integration.

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.

EXAMPLE 5 Solving for the Unknown Integral

Evaluate

Solution Let and Then and

The second integral is like the first except that it has sin x in place of cos x. To evaluate it,
we use integration by parts with

Then

 = e x sin x + e x cos x - L  e x cos x dx .

 L  e x cos x dx = e x sin x - a-e x cos x - L  s-cos xdse x dxdb
u = e x,  dy = sin x dx,  y = -cos x,  du = e x dx .

L  e x cos x dx = e x sin x - L  e x sin x dx .

du = e x dx, y = sin x ,dy = cos x dx .u = e x

L  e x cos x dx .

e xxn
1  xne x dx

 = x2e x - 2xe x + 2e x + C .

 L  x2e x dx = x2e x - 2L  xe x dx

L  xe x dx = xe x - L  e x dx = xe x - e x + C .

du = dx, y = e x ,u = x, dy = e x dx .

L  x2e x dx = x2e x - 2L  xe x dx .

y = e x ,u = x2, dy = e x dx, du = 2x dx ,

L  x2e x dx .
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The unknown integral now appears on both sides of the equation. Adding the integral to
both sides and adding the constant of integration gives

Dividing by 2 and renaming the constant of integration gives

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the
Fundamental Theorem in order to evaluate definite integrals by parts. Assuming that both

and are continuous over the interval [a, b], Part 2 of the Fundamental Theorem givesg¿ƒ¿

L  e x cos x dx = e x sin x + e x cos x
2 + C .

2L  e x cos x dx = e x sin x + e x cos x + C1 .
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Integration by Parts Formula for Definite Integrals

(3)L
b

a
ƒsxdg¿sxd dx = ƒsxdgsxd Dab - L

b

a
ƒ¿sxdgsxd dx

In applying Equation (3), we normally use the u and y notation from Equation (2)
because it is easier to remember. Here is an example.

EXAMPLE 6 Finding Area

Find the area of the region bounded by the curve and the x-axis from to

Solution The region is shaded in Figure 8.1. Its area is

Let and Then,

Tabular Integration

We have seen that integrals of the form in which ƒ can be differentiated
repeatedly to become zero and g can be integrated repeatedly without difficulty, are
natural candidates for integration by parts. However, if many repetitions are required,
the calculations can be cumbersome. In situations like this, there is a way to organize

1  ƒsxdgsxd dx ,

 = -4e-4 - e-4 - s-e0d = 1 - 5e-4 L 0.91.

 = -4e-4 - e-x D04 = [-4e-4 - s0d] + L
4

0
 e-x dx

 L
4

0
 xe-x dx = -xe-x D04 - L

4

0
 s-e-xd dx

du = dx .u = x, dy = e-x dx, y = -e-x ,

L
4

0
 xe-x dx .

x = 4.
x = 0y = xe-x

x

y

1 2 3 4–1 0

–0.5

–1

0.5

1

y ! xe–x

FIGURE 8.1 The region in Example 6.
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ƒ(x) and its derivatives g(x) and its integrals

2x

2

0 ex

exs+ d

exs- d

exs+ dx2

566 Chapter 8: Techniques of Integration

the calculations that saves a great deal of work. It is called tabular integration and is
illustrated in the following examples.

EXAMPLE 7 Using Tabular Integration

Evaluate

Solution With and we list:gsxd = ex ,ƒsxd = x2

L  x2ex dx .

ƒ(x) and its derivatives g(x) and its integrals

sin x

6x

6 cos x

0 sin x

s- d

-sin xs+ d

-cos xs- d3x2

s+ dx3

We combine the products of the functions connected by the arrows according to the opera-
tion signs above the arrows to obtain

Compare this with the result in Example 4.

EXAMPLE 8 Using Tabular Integration

Evaluate

Solution With and we list:gsxd = sin x ,ƒsxd = x3

L  x3 sin x dx .

L  x2ex dx = x2ex - 2xex + 2ex + C .

Again we combine the products of the functions connected by the arrows according to the
operation signs above the arrows to obtain

L  x3 sin x dx = -x3 cos x + 3x2 sin x + 6x cos x - 6 sin x + C .
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The Additional Exercises at the end of this chapter show how tabular integration can
be used when neither function ƒ nor g can be differentiated repeatedly to become zero.

Summary

When substitution doesn’t work, try integration by parts. Start with an integral in which
the integrand is the product of two functions,

(Remember that g may be the constant function 1, as in Example 3.) Match the integral
with the form

by choosing dy to be part of the integrand including dx and either ƒ(x) or g(x). Remember that
we must be able to readily integrate dy to get y in order to obtain the right side of the formula

If the new integral on the right side is more complex than the original one, try a different
choice for u and dy.

EXAMPLE 9 A Reduction Formula

Obtain a “reduction” formula that expresses the integral

in terms of an integral of a lower power of cos x.

Solution We may think of as Then we let

so that

Hence

If we add

sn - 1dL  cosn x dx

 = cosn-1 x sin x + sn - 1dL  cosn-2 x dx - sn - 1dL  cosn x dx .

 = cosn-1 x sin x + sn - 1dL  s1 - cos2 xd cosn-2 x dx ,

 L  cosn x dx = cosn-1 x sin x + sn - 1dL  sin2 x cosn-2 x dx

du = sn - 1d cosn-2 x s-sin x dxd and y = sin x .

u = cosn-1 x and dy = cos x dx ,

cosn-1 x #  cos x .cosn x

L  cosn x dx

L  u dy = uy - L  y du .

L  u dy

L  ƒsxdgsxd dx .
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to both sides of this equation, we obtain

We then divide through by n, and the final result is

This allows us to reduce the exponent on cos x by 2 and is a very useful formula. When n
is a positive integer, we may apply the formula repeatedly until the remaining integral is
either

EXAMPLE 10 Using a Reduction Formula

Evaluate

Solution From the result in Example 9,

 = 1
3 cos2 x sin x + 2

3 sin x + C .

 L  cos3 x dx = cos2 x sin x
3 + 2

3L  cos x dx

L  cos3x dx .

L  cos x dx = sin x + C or L  cos0 x dx = L  dx = x + C .

L  cosn x dx = cosn-1 x sin x
n + n - 1

n L  cosn-2 x dx .

nL  cosn x dx = cosn-1 x sin x + sn - 1dL  cosn-2 x dx .

568 Chapter 8: Techniques of Integration
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568 Chapter 8: Techniques of Integration

EXERCISES 8.2

Integration by Parts
Evaluate the integrals in Exercises 1–24.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. L  p4e-p dpL  x3ex dx

L  4x sec2 2x dxL  x sec2 x dx

L  sin-1 y dyL  tan-1 y dy

L
e

1
 x3 ln x dxL

2

1
 x ln x dx

L  x2 sin x dxL  t2 cos t dt

L  u cos pu duL  x sin 
x
2

 dx

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. L  e-2x sin 2x dxL  e2x cos 3x dx

L  e-y cos y dyL  eu sin u du

L
1>22

0
 2x sin-1 sx2d dxL

2

2>23
  t sec-1 t dt

L
p>2

0
 x3 cos 2x dxL

p>2
0

 u2 sin 2u du

L  t2e4t dtL  x5ex dx

L  sr2 + r + 1der drL  sx2 - 5xdex dx
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Substitution and Integration by Parts
Evaluate the integrals in Exercises 25–30 by using a substitution prior
to integration by parts.

25. 26.

27. 28.

29. 30.

Theory and Examples
31. Finding area Find the area of the region enclosed by the curve

and the x-axis (see the accompanying figure) for

a. b. c.

d. What pattern do you see here? What is the area between the
curve and the x-axis for an arbitrary
nonnegative integer? Give reasons for your answer.

32. Finding area Find the area of the region enclosed by the curve
and the x-axis (see the accompanying figure) for

a. b.

c. .

d. What pattern do you see? What is the area between the curve
and the x-axis for

n an arbitrary positive integer? Give reasons for your answer.

0

10

–10

y ! x cos x

x

y

!
2

7!
2

5!
2

3!
2

a2n - 1
2
bp … x … a2n + 1

2
bp ,

5p>2 … x … 7p>2 3p>2 … x … 5p>2p>2 … x … 3p>2y = x cos x

x

y

0 2!!

5

y ! x sin x10

–5

3!

np … x … sn + 1dp, n

2p … x … 3p .p … x … 2p0 … x … p
y = x sin x

L  zsln zd2 dzL  sin sln xd dx

L  ln sx + x2d dxL
p>3

0
 x tan2 x dx

L
1

0
 x21 - x dxL  e23s+9 ds

8.2 Integration by Parts 569

33. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes, the curve and the line about the line

34. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes, the curve and the line 

a. about the y-axis. b. about the line 

35. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes and the curve about

a. the y-axis. b. the line 

36. Finding volume Find the volume of the solid generated by re-
volving the region bounded by the x-axis and the curve

about

a. the y-axis. b. the line 

(See Exercise 31 for a graph.)

37. Average value A retarding force, symbolized by the dashpot in
the figure, slows the motion of the weighted spring so that the
mass’s position at time t is

Find the average value of y over the interval 

38. Average value In a mass-spring-dashpot system like the one in
Exercise 37, the mass’s position at time t is

Find the average value of y over the interval 0 … t … 2p .

y = 4e-t ssin t - cos td, t Ú 0.

0

Massy

Dashpot

y

0 … t … 2p .

y = 2e-t cos t, t Ú 0.

x = p .

y = x sin x, 0 … x … p ,

x = p>2.

y = cos x, 0 … x … p>2,

x = 1.

x = 1y = e-x ,

x = ln 2 .
x = ln 2y = ex ,
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Reduction Formulas
In Exercises 39–42, use integration by parts to establish the reduction
formula.

39.

40.

41.

42.

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually
gives good results:

The idea is to take the most complicated part of the integral, in this
case and simplify it first. For the integral of ln x, we get

For the integral of we get

 = x cos-1 x - sin scos-1 xd + C .

 = x cos-1 x - sin y + C

y = cos-1 x L  cos-1 x dx = x cos-1 x - L  cos y dy

cos-1 x

 = x ln x - x + C .

 = ye y - e y + C

 L  ln x dx = L  ye y dy

ƒ-1sxd ,

 = xƒ-1sxd - L  ƒsyd dy

 = yƒsyd - L  ƒsyd dy

 L  ƒ-1sxd dx = L  yƒ¿syd dy

L  sln xdn dx = xsln xdn - nL  sln xdn-1 dx

L  xneax dx = xneax

a - n
aL  xn-1eax dx, a Z 0

L  xn sin x dx = -xn cos x + nL  xn-1 cos x dx

L  xn cos x dx = xn sin x - nL  xn-1 sin x dx
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Use the formula

(4)

to evaluate the integrals in Exercises 43–46. Express your answers in
terms of x.

43. 44.

45. 46.

Another way to integrate (when is integrable, of
course) is to use integration by parts with and to
rewrite the integral of as

(5)

Exercises 47 and 48 compare the results of using Equations (4) and (5).

47. Equations (4) and (5) give different formulas for the integral of

a. Eq. (4)

b. Eq. (5)

Can both integrations be correct? Explain.

48. Equations (4) and (5) lead to different formulas for the integral of

a. Eq. (4)

b. Eq. (5)

Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 49 and 50 with (a) Eq. (4) and (b)
Eq. (5). In each case, check your work by differentiating your answer
with respect to x.

49. 50. L  tanh-1 x dxL  sinh-1 x dx

L  tan-1 x dx = x tan-1 x - ln 21 + x2 + C

L  tan-1 x dx = x tan-1 x - ln sec stan-1 xd + C

tan-1 x :

L  cos-1 x dx = x cos-1 x - 21 - x2 + C

L  cos-1 x dx = x cos-1 x - sin scos-1 xd + C

cos-1 x :

L  ƒ-1sxd dx = xƒ-1sxd - L  x a d
dx

 ƒ-1sxdb  dx .

ƒ-1
dy = dxu = ƒ-1sxd

ƒ-1ƒ-1sxd

L  log2 x dxL  sec-1 x dx

L  tan-1 x dxL  sin-1 x dx

y = ƒ-1sxdL  ƒ-1sxd dx = xƒ-1sxd - L  ƒs yd dy

Integration by parts with
u = y, dy = ƒ¿s yd dy

dx = ƒ¿s yd dy
y = ƒ-1sxd, x = ƒs yd

dx = e y dy
y = ln x, x = e y
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