

Al-Mustaqbal University

Biomedical Engineering Department

Subject Name: Dynamics

1st Class, Second Semester

Subject Code: [UOMU011024]

Academic Year: 2024-2025

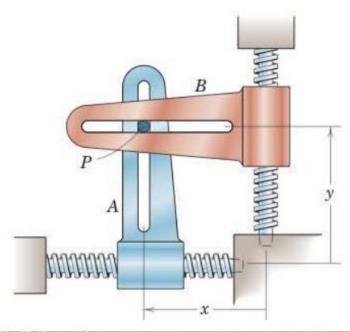
Lecturer: Dr. Ali kamil kareem

Assist.lec. Eman yasir

Email: ali.kamil.kareem@uomus.edu.iq

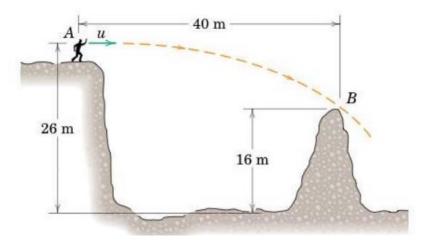
Lecture No.:- 4

Lecture Title: [Curvilinear Motion P2]


2/62 A particle which moves with curvilinear motion has coordinates in millimeters which vary with the time t in seconds according to x = 3t² - 4t and y = 4t² - 1/3 t³. Determine the magnitudes of the velocity v and acceleration a and the angles which these vectors make with the x-axis when t = 2 s.

2/62
$$x = 3t^2 - 4t$$
, $\dot{x} = 6t - 4$, $\dot{x} = 6 \text{ mm/s}^2$
 $y = 4t^2 - \frac{1}{3}t^3$, $\dot{y} = 8t - t^2$, $\dot{y} = 8 - 2t \text{ mm/s}^2$
When $t = 2s$, $\dot{x} = 12 - 4 = 8 \text{ mm/s}$ $v = \sqrt{\dot{x}^2 + \dot{y}^2}$
 $\dot{y} = 16 - 4 = 12 \text{ mm/s}$ $v = \sqrt{8^2 + 12^2} = 14.42 \frac{\text{mm}}{\text{s}}$
 $v = 16 - 4 = 12 \text{ mm/s}$ $v = 16 - 4$

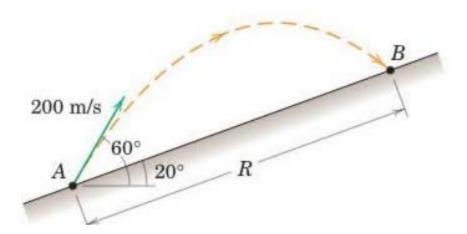
2/64 For a certain interval of motion the pin A is forced to move in the fixed parabolic slot by the horizontal slotted arm which is elevated in the y-direction at the constant rate of 3 in./sec. All measurements are in inches and seconds. Calculate the velocity v and acceleration a of pin A when x = 6 in.



2/64 $x = y^2/6$ & y = 3 in./sec $\dot{x} = \frac{y}{3}\dot{y}$, $\dot{x} = \frac{\dot{y}^2}{3} + \frac{y}{3}\dot{y}$ but $\dot{y} = 0$ & $\dot{y} = 3$ in/sec Also when y = 6 in., $y = \sqrt{36} = 6$ in. So $\dot{x} = \frac{6}{3}(3) = 6$ in/sec, Hence $v = \sqrt{\dot{x}^2 + \dot{y}^2} = \sqrt{6^2 + 3^2} = 3\sqrt{5}$ in/sec $a = \sqrt{a_x^2 + a_y^2} = \sqrt{(3^2/3)^2 + 0} = 3$ in./sec² **2/66** The x- and y-motions of guides A and B with right-angle slots control the curvilinear motion of the connecting pin P, which slides in both slots. For a short interval, the motions are governed by $x = 20 + \frac{1}{4}t^2$ and $y = 15 - \frac{1}{6}t^3$, where x and y are in millimeters and t is in seconds. Calculate the magnitudes of the velocity \mathbf{v} and acceleration \mathbf{a} of the pin for t = 2 s. Sketch the direction of the path and indicate its curvature for this instant.

2/66
$$x = 20 + \frac{1}{4}t^2$$
, $\dot{x} = \frac{1}{2}t$, $\dot{x} = \frac{1}{2} mm/s^2$
 $y = 15 - \frac{1}{6}t^3$, $\dot{y} = -\frac{1}{2}t^2$, $\dot{y} = -t$ mm/s^2 y
For $t = 2s$, $\dot{x} = 1$ mm/s
 $\dot{y} = -2$ mm/s
 $\dot{x} = \frac{1}{2} mm/s^2$ $x = --- p \neq path$
 $\dot{x} = \frac{1}{2} mm/s^2$ $x = --- p \neq path$
 $\dot{y} = -2$ mm/s^3
 $v = \sqrt{\dot{x}^2 + \dot{y}^2} = \sqrt{1^2 + (-2)^2} = 2.24$ mm/s
 $a = \sqrt{\ddot{x}^2 + \ddot{y}^2} = \sqrt{(1/2)^2 + (-2)^2} = 2.06$ mm/s^2

2/72 With what minimum horizontal velocity u can a boy throw a rock at A and have it just clear the obstruction at B?


2/72
$$a_y = -g$$
 so $y = 0 - \frac{1}{2}gt^2$, $t = \sqrt{\frac{2y}{g}} = \sqrt{\frac{2(26 - 16)}{9.81}}$

$$u = -- \times \qquad = 1.428 \text{ S}$$

$$26m \qquad |6m \qquad = 28.0 \text{ m/s}$$

2/85 A projectile is launched with an initial speed of 200 m/s at an angle of 60° with respect to the horizontal. Compute the range R as measured up the incline.

Ans. R = 2970 m

$$\frac{2/85}{y}$$
 200 m/s $\frac{1}{y}$ $\frac{1}{z}$ $\frac{1$

$$X = X_0 + V_{X_0}t B$$
: R cos $20^\circ = 100 t_f$ (1)
 $y = y_0 + V_{Y_0}t - \frac{1}{2}gt^2 B$: R sin $20^\circ = 173.2 t_f - \frac{9.81}{2}t_f^2$
(1): $t_f = 0.00940 R$

(2):
$$R \sin 20^\circ = 173.2(0.00940R) - \frac{9.81}{2}(0.00940R)^2$$

 $R = 2970 \text{ m}$

2/92 Determine the location h of the spot toward which the pitcher must throw if the ball is to hit the catcher's mitt. The ball is released with a speed of 40 m/s.

h = (2.2 + 0.6) - (0.573 + 1) = 1.227 m