

Ministry of Higher Education and Scientific Research Al- Mustaqbal University College of Science M.S.c Saja Jawad Obaid Lecture (9)

Buffer

What is a Buffer?

A buffer is a solution made of a weak acid and its conjugate base (or a weak base and its conjugate acid).

It resists changes in pH when small amounts of strong acid or base are added.

Real-life example: The human body uses buffer systems to keep blood pH around 7.4.

Buffer Solution

Components of a Buffer System

- Acidic Buffer: Weak acid + its conjugate base (e.g., Acetic acid + Sodium acetate)
 Basic Buffer: Weak base + its conjugate
- acid (e.g., Ammonia + Ammonium chloride)

How Does a Buffer Work?

- Strong acid added \rightarrow reacts with conjugate base \rightarrow forms weak acid \rightarrow minimal pH change.
- Strong base added \rightarrow reacts with weak acid \rightarrow forms water and weak base \rightarrow minimal pH change.

Biological Importance of Buffers

 Bicarbonate Buffer (HCO₃⁻ / H₂CO₃): Maintains blood pH and neutralizes acids.
 Phosphate Buffer (HPO₄²⁻ / H₂PO₄⁻): Functions in intracellular fluids.
 Protein Buffers (e.g., Hemoglobin): Accept or release H⁺ ions.

Laboratory Applications

- Used in DNA, PCR, and enzyme assays.
- Ensures stable pH for effective reactions and enzyme function.

THE END THANK YOU