

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

AL- MUSTAQBAL UNIVERSITY

COLLEGE OF SCIENCE

M.S.C. SAJA JAWAD ABAID

SAJA.JAWAD.ABAID@UOMUS.EDU.IQ

LECTURE (4)

((OVERVIEW OF PROTIENS))

Overview of Proteins – Detailed Lecture

Introduction:

Proteins are complex biomolecules that play a fundamental role in all biological processes. They are composed of amino acids and perform diverse functions such as structural support, catalysis, transport, and defense.

1. Definition and Characteristics of Proteins

1.1 Definition of Proteins

Proteins are polymers composed of basic units called **amino acids**, linked together by **peptide bonds** to form long chains with specific three-dimensional structures.

1.2 Characteristics of Proteins

- Contain carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sometimes sulfur (S) and phosphorus (P).
- Have a specific three-dimensional structure that determines their function.
- Can be **hydrophilic** (water-loving) or hydrophobic (water-repelling) depending on their amino acid composition.
- Function under a wide range of **pH and temperature conditions**, but they are **sensitive to extreme environmental changes**.

2. Structure of Proteins

2.1 Amino Acids

- Proteins are made up of **20 essential amino acids**, each differing in their **R-group** (side chain).
- Amino acids are classified into:

- **Essential amino acids**: Cannot be synthesized by the body and must be obtained from the diet (e.g., leucine, valine).
- **Non-essential amino acids**: Can be synthesized by the body (e.g., alanine, glutamine).

2.2 Peptide Bond

• A peptide bond forms when the amine group (NH₂) of one amino acid links to the carboxyl group (COOH) of another amino acid, releasing a molecule of water (H₂O).

3. Levels of Protein Structure

3.1 Primary Structure

- The linear sequence of amino acids in a polypeptide chain.
- •

3.2 Secondary Structure

- Formed due to hydrogen bonding between amino acids. Common structures include:
 - Alpha-helix (α-helix)
 - **ο** Beta-pleated sheets (β-sheets)
 - 0

3.3 Tertiary Structure

- The **three-dimensional folding** of a single polypeptide chain, determining the protein's function.
- •

3.4 Quaternary Structure

• Formed when multiple polypeptide chains **interact** to create a functional protein (e.g., hemoglobin).

4. Functions of Proteins

4.1 Structural Proteins

• Provide strength and support to cells and tissues (e.g., collagen in bones and skin).

4.2 Enzymatic Proteins

• Catalyze biochemical reactions (e.g., lipase, amylase).

4.3 Transport Proteins

• Carry molecules within the body (e.g., hemoglobin transports oxygen).

4.4 Defensive Proteins

• Involved in the **immune system** (e.g., **antibodies**).

4.5 Hormonal Proteins

• Regulate biological activities (e.g., insulin controls blood sugar levels).

4.6 Motor Proteins

• Aid in cellular and muscle movement (e.g., actin, myosin).

5. Protein Metabolism

- Anabolism: The synthesis of proteins from amino acids within cells.
- **Catabolism**: The breakdown of proteins into amino acids when needed for **energy** or in cases of protein deficiency.

6. Protein Degradation and Deficiency Diseases

6.1 Protein Degradation

• Carried out by **proteases** (protein-degrading enzymes), such as **pepsin** in the stomach.

6.2 Protein Deficiency Diseases

- **Kwashiorkor**: Caused by protein malnutrition, leading to **edema**, **weak immunity**, **and muscle wasting**.
- Marasmus: Severe caloric and protein deficiency, leading to muscle loss and stunted growth.

7. Dietary Sources of Proteins

- Animal sources: Meat, fish, eggs, dairy products.
- Plant sources: Legumes, lentils, nuts, grains.

اقرو زین وراکم کوز