

نحو جامعة مستدامة

Al-Mustaqbal University - College of engineering Department of computer engineering

Second stage

Lecture Week 3 "Flip-flops (Conversion between types & Applications)"

By DR. Mohammed Kadhim Rahma

Digital Systems

Objectives Conversion between Flip-Flop Types

By the end of this lecture, students will be able to

- Understand the concept of flip-flop type conversion (e.g., $D \leftrightarrow JK \leftrightarrow T$).
- Analyze and derive excitation tables for different flip-flop conversions.
- Design circuits using conversion logic.
- Apply Karnaugh maps to simplify conversion equations.
- Implement converted flip-flops in sequential circuits.

Objectives Applications of Flip-Flops

By the end of this lecture, students will be able to

- Identify real-world applications of flip-flops (e.g., counters, shift registers, memory).
- Design binary and mod-N counters using flip-flops.
- Analyze and simulate sequential logic systems.
- Apply flip-flops in timing, control, and data storage circuits.
- Use flip-flops in denouncing, frequency division, and sequence detection.

(5 mins)

Group Activity Brainstorming عصف ذهني

https://docs.google. com/forms/d/e/1FAI pQLSf8p2KWBtn8BIf VD3YYndnWpnnpkd XAh3zxAgFM ZfudN F3XQ/viewform?usp =header

Try thinking about the appropriate way to apply the Flip Flop conversion!

Then Submit your answer using the QR code or the link above.

Conversion Flip-Flops between types

Conversion for Flip-Flops

Excitation Table

Q _N	Q _{N+1}	S	R	J	K	D	Т
0	0	0	Х	0	X	0	0
0	1	1	0	1	X	1	1
1	0	0	1	Х	1	0	1
1	1	Х	0	Х	0	1	0

Converting Flip-Flops

Here we will discuss the steps that one must use to convert one given flip-flop to another one. Let us assume that we have the required flip-flops that are to be constructed using the sub-flip-flops:

1. Drawing of the truth of the required flip-flop.

2. Writing of the corresponding outputs of those subflip-flops that are to be used from the given excitation table.

3. Drawing of the K-Maps using the required inputs of the flip-flops and then obtaining the excitation functions for the inputs of the sub-flip-flops.

4. Construction of the logic diagram in accordance with the functions that we have obtained.

Conversion of SR to JK Flip-Flop

J	к	Q _N	Q _{N+1}	S	R
0	0	0	0	0	х
0	0	1	1	Х	0
0	1	0	0	0	Х
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	Х	0
1	1	0	1	1	0
1	1	1	0	0	1

Excitation Functions SR to JK

Conversion of SR to D FlipFlop

D	Q _N	Q _{N + 1}	S	R
0	0	0	0	X
0	1	0	0	1
1	0	1	1	0
1	1	1	X	0

Excitation Functions SR to D

Logic Diagram

S:

R:

Conversion Between FlipFlop Types

Procedure uses excitation tables

Method: to realize a type A flipflop using a type B flipflop:

- 1. Start with the K-map or state-table for the A-flipflop.
- 2. Express B-flipflop inputs as a function of the inputs and present state of A-flipflop such that the required state transitions of A-flipflop are reallized

Type B

Type A

1. Find $Q^+ = f(g,h,Q)$ for type A (using type A state-table)

2. Compute x = f1(g,h,Q) and y=f2(g,h,Q) to realize Q⁺.

Use JK-FF to realize D-FF

Example: Use JK-FF to realize D-FF

- 1) Start transition table for D-FF
- 2) Create K-maps to express J and K as functions of inputs (D, Q)
- 3) Fill in K-maps with appropriate values for J and K to cause the same state transition as in the D-FF transition table

State-Table

e.g. when D=Q=0, then $Q^+=0$ the same transition Q-->Q⁺ is realize with J=0, K=X

Q	Q+	R	S	J	K	Т	D
0	0	Х	0	0	Х	0	0
0	1	0	1	1	Х	1	1
1	0	1	0	Х	1	1	0
1	1	0	Х	Х	0	0	1

 $\begin{array}{ccc}
D & 0 & 1 \\
0 & 0 & 1 \\
1 & X & X \\
\end{bmatrix} = D$

Implement JK-FF using a D-FF

Implement JK-FF using a T-FF

t= jQ + kq

Flip-Flops Applications

(6 Minutes) Group Activity

Do you think traffic lights are a flip-flop application? Explain if so. Submit your answer using the QR code or the link below:

https://docs.google. com/forms/d/e/1FAI pQLSdVNBy4EQSIC ezEvpOQHBX0sa1ns FP01Vzkaui vda9OJ CaYA/viewform?usp =header

Applications of Flip-Flops

- . Frequency dividers . switch
- . Counters
- . Storage registers
- . Shift registers
- . Data storage

- . Latch
- . Data transfer
- . Memory
- . Registers

. Bounce elimination

•Data Storage:

Flip-flops can store a single bit of information, making them essential for registers, which are used to hold data temporarily or for longer periods.

Frequency Division:

Flip-flops can be configured to divide the frequency of a clock signal by a factor of 2, which is useful in applications like digital clocks and frequency synthesizers.

•Counters:

Flip-flops are the core components of counters, which are used to count events or pulses.

•Data Transfer:

2

Flip-flops can be used to transfer data between different parts of a circuit or between different circuits.

Sequential Logic:

They form the basis of sequential logic circuits, where the output depends not only on the current input but also on the past inputs.

•<u>Registers:</u>

Flip-flops are used to create registers, which are groups of flip-flops that can store multiple bits of data.

•Shift Registers:

3

Shift registers, which are used to shift data bits along a series of flip-flops, are built using flip-flops.

Bounce Elimination:

Flip-flops can be used to eliminate bounce (unwanted electrical noise) from mechanical switches.

•Latching:

They can be used as latches, which hold a piece of data until a new input changes its value.

From \ To

	SR Flip- Flop	JK Flip- Flop	D Flip-Flop	T Flip-Flop
SR	_	J = S K = R	D=S	T=S⊕R
јк	S=J R=K	_	D=J·Q + K·Q	Τ=Ϳ·Ϝ + Γ · Κ
D	S=D R=D	J= D·Q K =D·Q	_	T=D⊕Q
т	S=T·Q R=T·Q	J=T·Q K=T·Q	D=T⊕Q	

Notes:

• \oplus = XOR (Exclusive OR)

- •Q = Current output
- $\cdot \overline{Q} = Complement of output$

- Essential for Data Storage: Flip-flops are the fundamental units for storing binary data in digital systems, forming the basis of memory and registers.
- Core of Sequential Logic: They enable circuits to remember past states, making them crucial for designing counters, shift registers, and state machines.
- Foundation of Digital Systems: Flip-flops are vital for building reliable and synchronized digital systems like processors, communication devices, and embedded systems.

إصغائكم

UOMU022021Digital SystemsDepartment of Computer Engineering

END LESSON 3: FLIP-FLOPS (CONVERSION BETWEEN TYPES & APPLICATIONS)