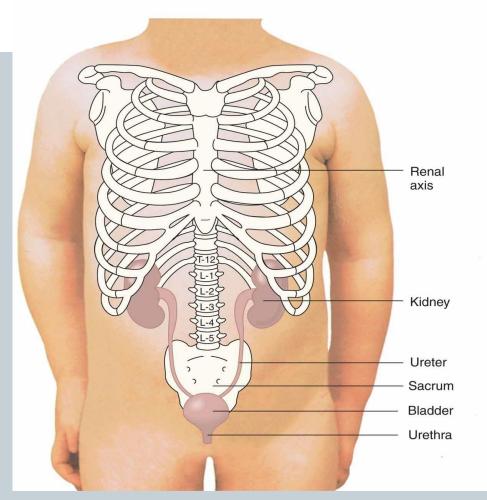
The Child With Genitourinary Dysfunction


Prepared by:

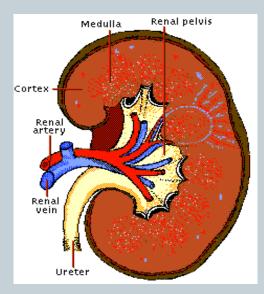
Dr. Reda Elfeshawy

Objectives:

- Explain anatomy and physiology of renal system
- Identify develop status of renal system for child
- Explain common renal disorders
- Clarify clinical manifestation for each genitourinary disorder
- Formulate nursing plan of care for the child with a genitourinary disorder

Review: Anatomy Urinary System

Comprised of: Kidneys *


Ureters**❖**

Bladder*

Urethra❖

Review: Function of the Kidney

- 4
- Regulates total body water
- Regulates blood pressure
- Regulates acid-base status
- Regulates electrolytes, calcium and phosphorus
- Converts Vitamin D to the active hormone (calcitriol)
- Produces Erythropoietin (EPO)
- Removes nitrogenous wastes
- Drug metabolism and removal

Urinary Output

 Urinary output per kilogram of body weight decreases as child ages because the kidneys become more efficient

Infants o 2-3 mL/kg/hr

Todder/Preschooler o

2mL/kg/hr

School Age o

1-2mL/kg/hr

Adolescent o

0.5-1 mL/kg/hr

1 gram diaper weight = 1 mL of urine

Bladder

Bladder capacity increases with age

15 to 50 mLat birth

700 mLin addescence

ounces

Urinary tract infection UTI

- May involve the urethra, bladder (lower urinary tract) and/or the ureters, renal pelvis, and renal parenchyma (upper urinary tract).
- It is not easy to localize the infection
- The peak incidence of UTI not caused by structural anomalies occurs between 2- 6 years of age
- Females <u>have 10-30 times higher risk than</u> <u>males</u>, <u>except</u> during the <u>neonatal period</u>

Etiology:

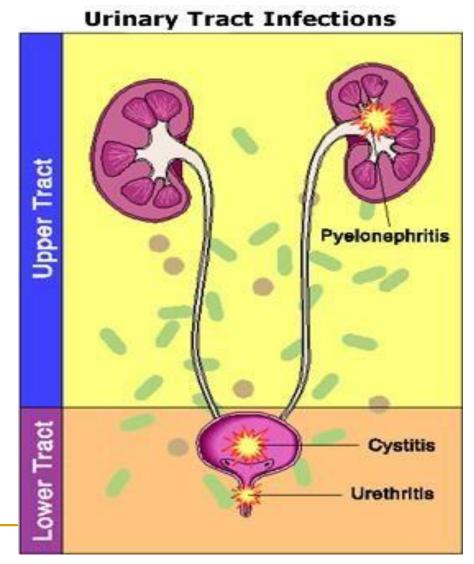
 Escherichia Coli, (E-Coli), Pseudomonas, Klabsiella,
Staphylococcus aureus, Haemophilus and Coagulase negative Staphylococcus.

Several factors contribute to the development of UTI in childhood:

- Anatomical and physical factors:
- Short urethra in the female
 - Urethra being close at the end of micturition may return contaminated bacteria to the bladder
 - Urine stasis, encourage growth of bacteria; urine has to be completely emptied from the bladder to flush away bacteria before it multiplies (since the temp of 37°C is very suitable)
 - Stasis can occur from anatomic abnormality such as dysfunction of voiding mechanism (reflux) or extrinsic ureter or bladder compression as in constipation

Diagnostic evaluation:

- Urine culture determine the type of bacteria (early morning specimen)
- The following tests are to be done <u>after</u> infection <u>subsides</u> to identify anatomic abnormality contributing to UTI and existing kidney changes after recurrent infections:
 - a. Voiding cysto-urethrogram
 - b. IVP intra venous pyelogram
 - c. Ultra sonography


TABLE 31-3 Normal Freshly Voided Urinalysis Results

MACROSCOPIC EXAMINATION	NORMAL RESULTS
Color	Pale yellow, clear
Odor	Ammonia-like smell
Specific gravity	≤1.010 in well hydrated child
рН	4.5–8
Protein	Negative; <150 mg/24 hr
Glucose	<130 mg/24 hr
Ketones	Negative
Bilirubin	Negative
MICROSCOPIC EXAMINATION	
Red blood cells	0–5 per high-powered field (HPF)
White blood cells	<2 per HPF
Casts (hyaline)	1 per every 10–20 low-powered fields (LPF)
Crystals	None

Data from Liao, J. C., & Churchill, B. M. (2001). Pediatric urine testing. Pediatric Clinics of North America, 48(6), 1425–1440.

Genitourinary Tract: clinical manifestation

- Cystitis (infection of bladder):
 - low grade fever (LGF)
 - Mild abdominal pain
 - Enuresis (preschooler)
- Pyelonephritis (kidneys):
- Symptoms are more acute
 - High fever
 - Flank or abdominal pain
 - Vomiting
 - Malaise

Clinical manifestations depends on the age of the child

New born:

- Fever or hypothermia
- Sepsis
- Children <2 years of age:</p>
 - Failure to thrive
 - Vomiting
 - Abdominal distension.
 - Frequent or infrequent voiding
 - Irritability
 - Persistent rash

- Feeding problems
- Diarrhea
- Jaundice
- strong smelling urine
- Abnormal stream

Children > 2 years of age:

- Day time incontinence in a toilet trained child
- Hematuria

Feve

Enuresis

Abdominal painDysuria
Strong foul smelling urine.
Urine frequency

Adolescents:

1. Lower tract infection: Upper tract infection . 7

Painful urination

Fever -

Small amount of urine

Chills -

Hematuria •

- Flank pain

Fever usually absent

Urine: cloudy, Thick with strands of mucus + pus and unpleasant fishy smell even when fresh

Therapeutic management:

Treatment:

- 1. Antibiotics
- 2. Antimicrobial drugs
- If anatomical defects are present surgical correction is done to Prevent recurrence
- 5. Follow up study

Prevention of UTI:

- Hygiene
- Avoid tight clothing use cotton underwear
- Encourage and educate total emptying of the bladder and not to hold urine for prolonged time
- Encourage frequent emptying especially before long trips
- Encourage generous fluid intake
- Acidify urine with drinking juices such as apple juice and a diet high in animal protein.

THANK YOU