Lec9 Nanotechnology for the Environment

M.S.c. Sarah Raheem

Nanotechnology

The emerging fields of nanoscience and nanoengineering are leading to unprecedented understanding and control over the fundamental building blocks of all physical things.

The Disadvantages:

Nature of nanoparticles themselves Characteristics of the products made Manufacturing processes involved.

The Advantages

Nanotechnology has the potential to substantially benefit environmental quality and sustainability through :

Pollution prevention

Treatment

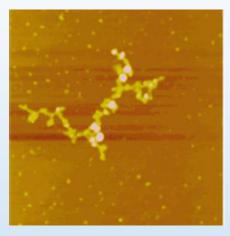
Remediation

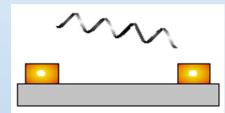
Information

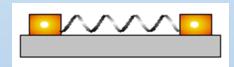
Nanotechnology for pollution prevention

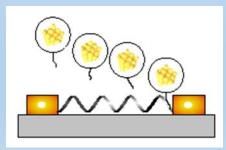
Synthetic or manufacturing processes which can occur at ambient temperature and pressure

Use of non-toxic catalysts with minimal production of resultant pollutants

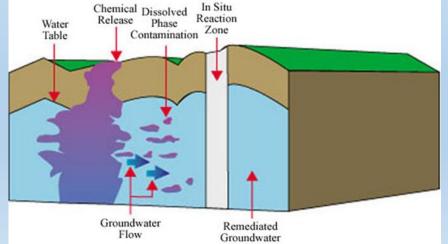

Use of aqueous-based reactions.


Build molecules as needed -- "just in time."


Nanoscale information technologies for product identification and tracking to manage recycling, remanufacture, and end of life disposal of solvents.


Biomolecular nanolithography

- Biomimetic methods of organizing metal particles 1.5 nanometers in diameter
- Assembling the particles on a biopolymer template or scaffold stretched out on a surface
- Nanostructures are organized into well-defined chip architectures, such as lines and grids.
- Process eliminates the current process chemicals that are harmful to the environment.
- Nanoscale assemblies have been made that demonstrate stable, roomtemperature electrical behavior that may be tolerant of defects and useful in building nanoscale circuits


Treatment & Remediation

Iron Treatment Walls...

Used in groundwater treatment for many years.

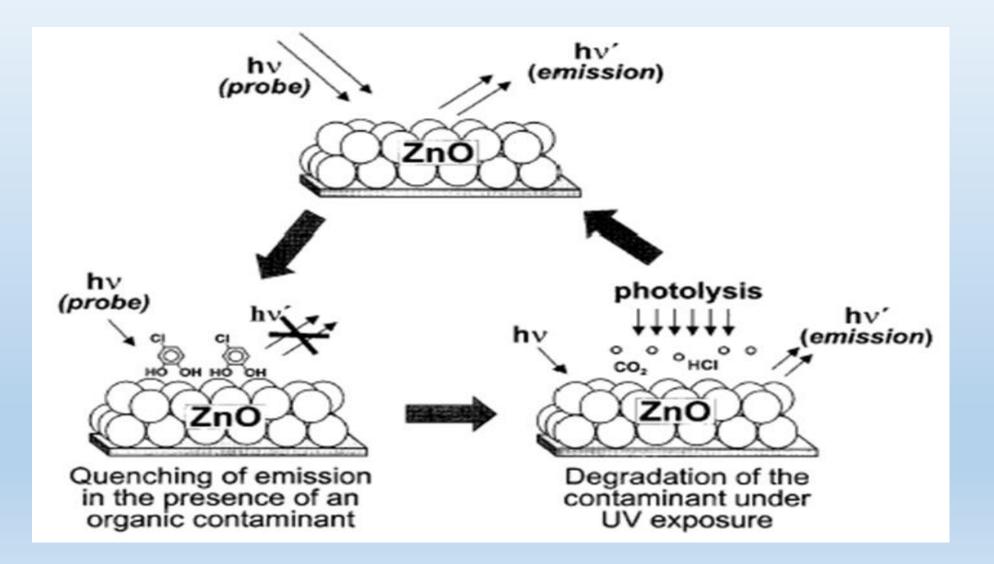
Iron chemically reduces organic and inorganic environmental contaminants.

Currently involves granular or "microscale" iron (250 mm or 50,000 nm).

Disease Detection

Nanotechnology

Nanosized iron enhances the reaction. Enhanced further by coupling with other metals (Fe/Pd)* on the nanoscale.


Nano FeO is more reactive and effective than the microscale.

Smaller size makes it more flexible -- penetrates difficult to access areas.

"Sense and Shoot" Approach to Pollution Treatment

- Nanosized zinc oxide (ZnO) "senses" organic pollutants indicated by change in visible emission signal.
- The ZnO "shoots" the pollutants via photocatalytic oxidation to form more environmentally benign compounds.
- Sensing capability means that the energy-consuming oxidation stage only occurs when the pollutants present.
- Multifunctionality and "smartness" is highly desirable for environmental applications.

"Sense and Shoot" Approach to Pollution Treatment

