
Angular Momentum and Areal Velocity of a Particle 
Moving in a Central Field

L any particle 
moving in a central 
field of force

=conserved

• we first calculate the magnitude of the angular momentum of a 
particle moving in a central field.

• We use polar coordinates to describe the motion

• The velocity of the particle is

𝑣𝑣 = 𝑒𝑒𝑟𝑟𝑟̇𝑟 + 𝑒𝑒𝜃𝜃𝑟𝑟𝜃̇𝜃 In the Polar coordinates(see Chapter 1)

𝐿𝐿 = 𝑟𝑟 × 𝑝𝑝And we have :



So, the magnitude will be: 𝐿𝐿 = |𝑟𝑟 × 𝑚𝑚𝑚𝑚| 𝐿𝐿 = |𝑟𝑟𝑒𝑒𝑟𝑟 × 𝑚𝑚(𝑒𝑒𝑟𝑟𝑟̇𝑟 + 𝑒𝑒𝜃𝜃𝑟𝑟𝜃̇𝜃)|

𝐿𝐿 = 𝑚𝑚𝑟𝑟2𝜃̇𝜃 =constant                                                          𝒂𝒂𝒂𝒂 𝒆𝒆
𝒓𝒓

× 𝒆𝒆
𝒓𝒓

= 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝒆𝒆
𝒓𝒓

× 𝒆𝒆
𝜽𝜽

= 𝟏𝟏

Now, we calculate the "areal velocity," 𝐴̇𝐴, of the particle. Figure 6.4.l(b) shows the triangular area, dA, swept out by the 
radius vector r as a planet moves a vector distance dr in a time dt along its trajectory relative to the origin of the central 
field
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Thus, the areal velocity, A, of a particle moving in a central field is directly proportional to its angular momentum

and, therefore, is also a constant of the motion, exactly as Kepler discovered for planets moving in the central

gravitational field of the Sun.



Let a particle be subject to an attractive central force of the from (𝑟𝑟) , where 𝑟𝑟 is the distance between the particle and the

centre of the force. Find 𝑓𝑓 (𝑟𝑟) if all circular orbits are to have identical areal velocities, 𝐴̇𝐴.

Thus,

𝑚𝑚𝑎𝑎𝑟𝑟 = −𝑚𝑚𝑚𝑚𝜃̇𝜃2 = 𝑓𝑓(𝑟𝑟) × (𝒓𝒓
𝟑𝟑

𝒓𝒓𝟑𝟑
)

Example (1)

Solution:

Because the orbits are circular, the acceleration,𝑟𝑟, has no transverse component and is entirely in the radial direction. In

polar coordinates, the acceleration is given by:

𝑎𝑎 = 𝑟̈𝑟 − 𝑟𝑟𝜃̇𝜃2

𝑓𝑓(𝑟𝑟) = −
𝑚𝑚𝑟𝑟4𝜃̇𝜃2

𝑟𝑟3
=

𝐿𝐿2

𝑚𝑚𝑟𝑟3
= 𝑓𝑓(𝑟𝑟)

,𝐴𝐴𝐴𝐴 𝐴̇𝐴 =
𝐿𝐿

2𝑚𝑚
𝑓𝑓 𝑟𝑟 = −

4𝑚𝑚𝐴̇𝐴2

𝑟𝑟3
= 𝑓𝑓(𝑟𝑟)

,𝐴𝐴𝐴𝐴 𝐿𝐿 = 𝑚𝑚𝑚𝑚 𝜃̇𝜃

Because the orbits are circular, the

acceleration, 𝑖𝑖. 𝑒𝑒. 𝑟̈𝑟 = 0 ,



6.5 Kepler's First Law: The law of Ellipses :
To prove Kepler's first law, we develop a general differential equation for the orbit of a particle in any 
central, isotropic field of force. Then we solve the orbital equation for the specific case of an inverse-square 
law of force. 

The equation of motion in polar coordinates is 𝑚𝑚𝑟̈𝑟 = 𝑓𝑓 𝑟𝑟 𝑒𝑒𝑟𝑟
Where 𝑓𝑓(𝑟𝑟) is the central, isotropic force that acts on the particle of mass 𝑚𝑚.

acceleration vector in polar coordinates 

𝑎𝑎 = 𝑟̈𝑟 = 𝑟̈𝑟 − 𝑟𝑟 ̇𝜃𝜃2 𝑒𝑒𝑟𝑟 + 𝑟𝑟𝜃̈𝜃 + 2𝑟̇𝑟𝜃̇𝜃 𝑒𝑒𝜃𝜃
So, 

𝑚𝑚 𝑟̈𝑟 − 𝑟𝑟 ̇𝜃𝜃2 𝑒𝑒𝑟𝑟 = 𝑓𝑓(𝑟𝑟) m 𝑟𝑟𝜃̈𝜃 + 2𝑟̇𝑟𝜃̇𝜃 𝑒𝑒𝜃𝜃 = 0

No component toward θ direction



𝑚𝑚
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑟𝑟2𝜃̇𝜃 = 0 𝑟𝑟2𝜃̇𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑙𝑙Or Where 𝑙𝑙 is the angular 

momentum per unit mass:

𝑙𝑙 =
𝐿𝐿
𝑚𝑚

= 𝑟𝑟 × 𝑣𝑣

Given a certain radial force function f (r), we could, in theory, solve the pair of differential equations (Equations 6.10a and

b) to obtain 𝑟𝑟 and 𝜃𝜃 as functions of 𝑡𝑡. Often one is interested only in the path in space (the orbit) without regard to the time

𝑡𝑡. To find the equation of the orbit, we use the variable 𝒖𝒖 defined by

𝑟𝑟 = 1
𝑢𝑢

or  𝑢𝑢 = 1
𝑟𝑟

And  𝑙𝑙 = 𝑟𝑟2𝜃̇𝜃 = 1
𝑢𝑢2

𝜃̇𝜃

𝑑𝑑𝑑𝑑 = 𝑟̇𝑟 = −1
𝑢𝑢2
𝑢̇𝑢 = −1

𝑢𝑢2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −1
𝑢𝑢2

𝜃̇𝜃 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝑙𝑙 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

m 𝒓𝒓𝜽̈𝜽 + 𝟐𝟐𝒓̇𝒓𝜽̇𝜽 𝒆𝒆𝜽𝜽 = 𝟎𝟎



𝑑𝑑𝑑𝑑 = 𝑟̇𝑟 = −1
𝑢𝑢2
𝑢̇𝑢 = −1

𝑢𝑢2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −1
𝑢𝑢2

𝜃̇𝜃 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝑙𝑙 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

As we employed the fact 𝑙𝑙 = 𝜃̇𝜃𝑢𝑢2 So the above equation can be written as:

𝑟̇𝑟 = − 𝑙𝑙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑟̈𝑟 = − 𝑙𝑙2𝑢𝑢2

𝑑𝑑2𝑢𝑢
𝑑𝑑𝜃𝜃2

Substituting the values found for 𝑟𝑟, 𝜃̇𝜃, and 𝑟̈𝑟 into Equation 6.10a, we obtain

H.W

𝑎𝑎 = 𝑟̈𝑟 = 𝑟̈𝑟 − 𝑟𝑟 ̇𝜃𝜃2 𝑒𝑒𝑟𝑟 + 𝑟𝑟𝜃̈𝜃 + 2𝑟̇𝑟𝜃̇𝜃 𝑒𝑒𝜃𝜃

𝑚𝑚 𝑟̈𝑟 − 𝑟𝑟 ̇𝜃𝜃2 𝑒𝑒𝑟𝑟 = 𝑓𝑓(𝑟𝑟) 𝑟𝑟𝜃̈𝜃 + 2𝑟̇𝑟𝜃̇𝜃 𝑒𝑒𝜃𝜃 = 0

𝑑𝑑2𝑢𝑢
𝑑𝑑𝜃𝜃2

+ 𝑢𝑢 = −
1

𝑚𝑚𝑙𝑙2𝑢𝑢2
𝑓𝑓(𝑢𝑢−1)

Differential equation of the orbit of a 

particle moving under a central force.



Example (2):
A particle in a central field moves in the spiral orbit 𝑟𝑟 = 𝑐𝑐𝜃𝜃2 Determine the force function. 

Solution: 

We have 𝑢𝑢 = 1
𝑟𝑟

= 1
𝑐𝑐𝜃𝜃2

and 𝜃𝜃 = 1
𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
2
𝑐𝑐

1
𝜃𝜃3

𝑑𝑑2𝑢𝑢
𝑑𝑑𝜃𝜃2

= −6
𝑐𝑐
1
𝜃𝜃4

= 6 𝑐𝑐𝑢𝑢2

Now, eq. 6.17 will applied 𝑑𝑑2𝑢𝑢
𝑑𝑑𝜃𝜃2

+ 𝑢𝑢 = −
1

𝑚𝑚𝑙𝑙2𝑢𝑢2
𝑓𝑓(𝑢𝑢−1)

6 𝑐𝑐𝑢𝑢2 + 𝑢𝑢 = −
1

𝑚𝑚𝑙𝑙2𝑢𝑢2
𝑓𝑓 𝑢𝑢−1

𝑓𝑓 𝑢𝑢−1 = −𝑚𝑚𝑙𝑙2 6𝑐𝑐𝑢𝑢2 + 𝑢𝑢3
𝑓𝑓 𝑟𝑟 = −𝑚𝑚𝑙𝑙2( 6𝑐𝑐

𝑟𝑟4
+ 1

𝑟𝑟3
) as 𝑢𝑢 = 1/𝑟𝑟

Thus, the force is a combination of an inverse cube and inverse-

fourth power law
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