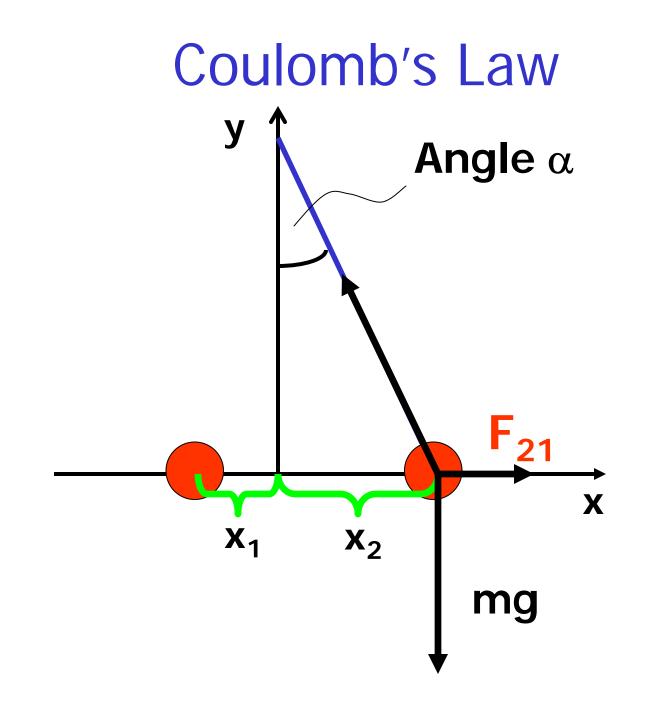
Electricity and Magnetism

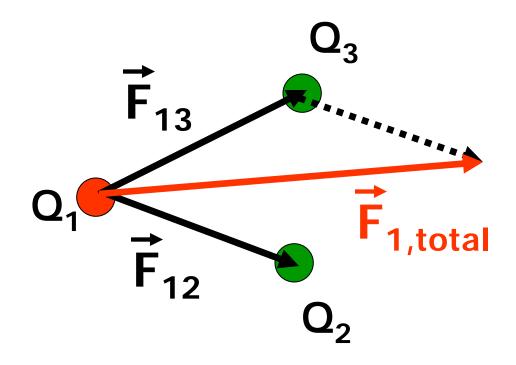
- Recap:
 - Fundamental Forces
 - E.S. Induction
 - Coulombs law (qualitative)
- Coulombs Law (quantitative)
- Induction (Demos)

What we learned last time (II)


- Strength of Electrostatic Force (qualitatively):
 - If distance gets larger, force gets weaker
 - If charge gets bigger, force gets stronger
- Coulomb's Law (1780):
- Electrostatic Induction
 - Force on (globally) neutral objects by redistributing balance of positive and negative charges

What we learned last time (I)

- Four fundamental forces
 - Weak, Strong, Electromagnetic, Gravity
- All mediated by Exchange Particles
- Exchange particle for E.M. Force is Photon
 mass m=0 -> Long Range
- E.M. Force dominates from 10⁻¹⁰ to 1 m
- E.M. Force is much stronger (x10³⁵) than Gravity


Today

- Study Coulomb's Law
 - Check 'Inverse square law' (F~1/r²) experimentally
- Superposition principle
 - What happens when there are many charges?
- 'Challenge' Demo on E.S. Induction
 - Summarize what we know about E.S.

Superposition principle

Just add the forces on Q₁!

Superposition principle

- Just add the forces on Q₁!
- Works for arbitrary number of charges:

$$\vec{F}_1 = \sum kQ_1Q_i/(\vec{r}_i/r_i^{3})$$

Superposition principle

- What to do for many, many charges?
 10⁹ e⁻ on glass rod...
- Calculus makes life easier (for a change)!
- Replace sum with integral!